First Proof: Comparison of Our Solutions with the Reference
Solutions (Q1-Q10)

February 14, 2026

Scope and format

This document consolidates (in order Q1-Q10) my prior comparisons between:

o our LaTeX solutions (the ten “q#_ proof*.tex” drafts), and

« the reference solutions/comments in FirstProofSolutionsComments.pdf.
For each question, I list:

1. what the reference solution does (key objects, lemmas, spine),

2. what our solution does (as written),

3. a detailed differences / missing pieces checklist.

1 Question 1 (Hairer): non-(quasi)invariance of the ®; measure
under shifts

Reference solution: what it does

o Works with the stochastic quantization stationary process u(t) whose fixed-time law is p.

e Uses the decomposition u = —® + v where ® solves the linearized SPDE and v is controlled
by a paracontrolled-type expansion, e.g.

v=-3((v—U) <)+
(cf. their Proposition 4.1-style statement).

o Introduces a key diverging constant ¢y 2 and proves a lower bound ¢y 2 2 log N (their Lemma
4.3).

o Defines a separating event B (for v > 1/2) of the form

B, = { lim (log N)™7 (H3(Pnu;cn) + 9cn 2PN, V) = 0}
N—o0

and proves u(B,) =1 (via Lemmas 4.2, 4.4, 4.5 plus product/commutator estimates).

o Shows that under u +— u + 1) the extra term 9(log N)™Ven 2(¢n, ¥) diverges for 1/2 < v < 1,
so Tjpu(By) = 0.

+ Concludes mutual singularity p L Tjp for any nonzero smooth shift ¢.



Our solution: what it does

o Uses a mollifier scale &, = exp(—e™) and an observable

X = /(P ey 0) + Cole) (e )

and claims X,, — 0 in probability under p but X,, — oo under the shifted measure due to a
diverging linear counterterm.

o Implements the correct high-level idea: build an event that has u-probability 1 but has

qu p-probability 0.

Differences / what we were missing (detailed checklist)

1. Canonical construction not built: the reference works through the stationary SPDE
and the decomposition u = —® + v. Our writeup does not establish (or precisely cite) this
representation and the needed control space for v.

2. Wrong/unspecified regularization scheme: reference uses Py and tracks (log N)~7 with
N — oo0; we used a special subsequence &, without justifying equivalence of schemes or
scaling.

3. Missing the exact separating event B.,: reference uses the specific combination Hz(Pyu;cn)+
9cn,2Pyu and proves convergence to 0 after scaling; we only asserted a comparable combina-
tion with an unspecified Cs(e).

4. Coefficient and Wick/Hermite structure: the constant 9 and the precise correction
9cn,2Pnvu come from an explicit Wick/Hermite expansion and renormalization bookkeeping.
We did not derive these constants.

5. Key lemmas missing: we did not prove the analogues of:

o Lemma 4.2: scaled Wick-cubic decay/convergence (y > 1/2 threshold),
e Lemma 4.4: convergence of polynomial expressions in the cutoff field @y,
o Lemma 4.5: convergence of renormalized quadratic/cross terms,
o Lemma 4.3: logarithmic divergence cy 2 2 log V.
6. Parameter regime clarity: reference needs 1/2 < v < 1 to both kill the cubic term and

make the drift blow up; our exponent 3/4 was hard-coded and not justified as part of a
general y-scheme.

2 Question 2 (Nelson): Rankin—Selberg test vector, single W
for all =

Reference solution: what it does

« Constructs a single Whittaker function W € W(II,1~!) that works uniformly for all
representations 7 of fixed conductor.

e Uses the Godement—Jacquet functional equation and Mellin inversion, defining a
carefully chosen test function 8 and its transform 3% adapted to 7’s y-factor.

e Reduces the shifted Rankin—Selberg integral to an integral over a congruence subgroup
K1(q) and uses newvector theory to prove the integral is nonzero for all s.

o Links the twist parameter ug to the conductor by choosing () generating q L



Our solution: what it does

e Starts from a K, -fixed vector in m and constructs W by prescribing compactly-supported
Kirillov/Whittaker data so that the integrand is “constant” on its support, turning the
integral into a volume.

Differences / what we were missing (detailed checklist)

1. Fatal requirement mismatch: our W depends on 7 (through the chosen K,,-fixed vector).
The problem requires one W depending only on 11, valid for all 7 of a given conductor.

2. Constant-on-support strategy fails in general: already for n = 1 the integral becomes a
Gauss sum and the integrand cannot be constant; in higher rank central character obstructions
persist (as stressed in the reference comments).

3. Missing the core analytic engine: no Godement—Jacquet functional equation, no Mellin
inversion, no (/8% mechanism tied to y-factors.

4. Missing the newvector/congruence subgroup reduction: reference reduces to Ki(q)
and uses newvector theory to force nonvanishing for all s; we do not.

5. Conductor linkage not used: the choice of Q) is tied to n’s conductor in the reference; our
proof treats () as an external parameter without exploiting e-factor structure.

3 Question 3 (Williams): Markov chain with stationary measure
from F;(-;q=1,t)

Reference solution: what it does

o Constructs a nontrivial, explicit chain (“interpolation t-PushTASEP”-type) whose tran-
sitions are defined probabilistically /combinatorially, not by quoting F* to define the
kernel.

o Proves stationarity using two-line queues / (signed) queue combinatorics and weight
identities matching the interpolation ASEP/Macdonald objects specialized at ¢ = 1.

o Uses the “restricted” hypothesis (unique 0, no 1’s) as a structural input in the queue/weight
algebra.

Our solution: what it does

e Proposes an adjacent transposition chain with swap probabilities involving rational functions

. x;—tx;
like Z—-+L,
Ti—Ti41

« Claims stationarity by an asserted exchange ratio identity Fy , / F; matching the swap-rate
ratio.

Differences / what we were missing (detailed checklist)

1. Wrong chain: the reference chain is not a simple adjacent-swap process; it is a global push
process with additional structure.

2. Hidden dependence on the polynomials: while our transition rule does not explicitly
mention F™, our verification relies on an unproved identity about Fy , /F .5 this is essentially
the failure mode the comments highlight for “Metropolis—Hastings-like” approaches.



3. Missing the combinatorial proof framework: no two-line queues, no signed queues, no
weight-generating argument.

4. Kernel validity not established: positivity/stochasticity (probabilities in [0, 1] and row-
sums 1) is not proven carefully for the parameter domain.

4 Question 4 (Garza Vargas—Srivastava—Stier): finite free Stam
inequality

Reference solution: what it does

Works on ordered roots and defines the root map Qm, (a, 5) = 7 via

pBng = > [[(@—ai—Br).

TES, i=1

Defines the score vector J,(a); =3, (i — o)t and @, (p) = || Jn ()|

Uses reverse heat flow on roots (Lemma 1.1-style) and the key identity (Obs. 2.1)

Jz, (aJn(),bJn(8)) = (a+b)Jn(7).

Proves the Jacobian contraction on a codimension-2 subspace V:

1, (s 0) 12 < flul® + o]
(Prop. 2.1), via a Hessian identity + hyperbolic polynomial convexity (Bauschke et al.).
« Concludes (a + b)2®(7) < a?®(a) + b>®(B) and optimizes a, b to obtain Stam.

Our solution: what it does

o Uses an operator/differential viewpoint, introduces a semigroup, and asserts a Blachman /Stam-
type inequality from a “spectral lower bound” lemma, without establishing the Jacobian/Hessian /hyperbolicity
machinery.

Differences / what we were missing (detailed checklist)

1. Missing the central geometric object: we did not build g, and its Jacobian Jg, as the
main proof driver.

2. Missing Observation 2.1 (the way scores transform through Qg under reverse heat flow),
which is the bridge from dynamics to the inequality.

3. Missing the hard step (Prop. 2.1): we did not prove the contraction inequality. The
reference proves it via:
o a Hessian identity expressing Jmg, Jg in terms of Hessians of 2; on V, and
e PSD-ness of certain Hessian combinations coming from hyperbolic polynomial convexity.
4. Our “spectral lower bound” is not a substitute for the Hessian/PSD argument and

leaves a gap.

5. Multiplicity handling: reference deals with multiple roots via perturbation/continuity; we
did not execute this rigorously.



5 Question 5 (Hill-Lawson—Hill): O-slice connectivity via geo-

metric fixed points

Reference solution: what it does

Works with an incomplete transfer system O and admissible H-sets T = || H/K; with
Defines 79, as the localizing subcategory generated by norms NT S with |T| > n, using
NTS! o~ SRT,

Introduces the characteristic subgroup xo(H) and proves the numerical characterization
(Theorem 2.7):

E e 7'20” < VH <G, [H:xo(H)] gconn(E)(H) > n.
Proves the forward direction by computing geometric fixed points of generators (Lemma
2.3-type orbit count bound).

Proves the converse using isotropy separation and a slice computation for geometric Mackey
functors (Lemmas 2.5-2.6).

Our solution: what it does

States a criterion in terms of geometric fixed points ®(X) being Ay (n)-connective, with

Ag(n) =min{|T/H|:T € O(H), |T| > n}.

Argues via isotropy separation + “geometric part” reduction, with a compressed localizing-
subcategory argument.

Differences / what we were missing (detailed checklist)

1.

Missing the characteristic subgroup formulation: we did not define xo(H) nor
state/prove the clean formula with [H : xo(H)].

. Missing the link Ay (n) = [n/[H : xo(H)]]: to reconcile our Ay with the reference, one

must prove this numerical identity and translate it into the [H : xo(H)] - gconn condition.

Forward lemma missing: we did not reproduce the reference’s precise orbit-count inequality
(geometric fixed points of the generators).

Converse mechanism missing: we did not reproduce the isotropy separation criterion
plus the key lemma computing slices of ¥ HM (geometric Mackey functors).

. Categorical infrastructure omitted: truncation/cover functors and discreteness results

are part of the reference proof’s spine (even if not strictly required for the bare equivalence).

6 Question 6 (Spielman): existence of an e-light set of size > cen

Reference solution: what it does

Proves the statement with an explicit constant, e.g. ¢ = 1/42, giving |S| > en/42.

Uses a greedy iterative selection with two maintained invariants:

— a leverage-score (mass) control for the selected set,



— a spectral barrier potential controlling the top eigenvalues throughout the process.

o Works in a normalized image space (e.g. Laplacian image), using eigenvalue inequalities (Ky
Fan trace-type) and counting to show many “good” vertices exist at each step.
Our solution: what it does

o Proves an upper bound obstruction: any universal constant must satisfy ¢ < 1/2 (perfect
matching example).

e Gives a linearization reduction and isolates a conjectural subset-selection condition; shows an
analogous statement fails for arbitrary PSD families.
Differences / what we were missing (detailed checklist)

1. We do not prove any positive constant ¢ > 0. The reference proves existence with an
explicit positive constant; our writeup only provides an obstruction and partial reductions.

2. Missing the full constructive method: no greedy algorithm with explicit invariants, no
barrier potential, no iteration analysis establishing progress.

3. Mismatch in technical route: we relax to a linearized PSD-sum statement; the reference
controls the actual Lg behavior via sharper spectral arguments tailored to the graph Laplacian
structure.

7 Question 7 (Weinberger): uniform lattice with 2-torsion vs
rationally acyclic universal cover
Reference solution: what it does

o Uses lattice-specific structure: reduces to an extension I' = m x Zy with 7 a torsion-free
lattice.

 Employs rigidity /higher-signature technology (Novikov/assembly injectivity, symmetric
signatures, and cobordism/fixed-set arguments) to contradict rational acyclicity of M under
the presence of Z/2-torsion in I'.

o Key point: the obstruction is not purely Smith theory; it is a lattice/rigidity phenomenon.

Our solution: what it does

e Proves a different claim under a stronger hypothesis: if M is integrally acyclic (hence mod-p
acyclic), then 71 (M) is torsion-free, using Smith fixed-point theory plus a deck transformation
argument.

Differences / what we were missing (detailed checklist)

1. Hypothesis mismatch (fatal): the problem assumes only Q-acyclicity, not Z-acyclicity.
From Q-acyclic you cannot deduce mod-2 acyclicity; thus Smith theory does not apply as we
used it.

2. We ignored the essential lattice input: in the rational setting, the reference needs the
lattice/semisimple structure and the rigidity tools; our proof does not use them.



3.

4.

Known counter-phenomena: the comments stress that many “pure Smith” arguments fail
because there exist rationally acyclic spaces admitting free Z/2-actions in other contexts; the
lattice assumption is precisely what blocks these.

Missing the higher-signature / assembly-map argument that drives the reference
proof.

8 Question 8 (Abouzaid): Lagrangian smoothing of a polyhedral

Lagrangian surface

Reference solution: what it does

Proves a sharp linear-algebra normal form at a vertex meeting four faces: after a linear
symplectic change, the local model is a product of a standard “positive axes union” with R?
(Lemma 1-type).

Deduces existence of a Lagrangian plane L so that the symplectic-pairing projection ¥ — LV
is a homeomorphism (Corollary 1-type), not just transverse.

Introduces smoothing functions S(X) via a canonical C! function ¢x (piecewise quadratic),
and proves a bijection: smoothing functions (mod constants) <+ graphical Lagrangians near
Y (Lemma 3 / Lemma 6-type).

Handles edges using a contractibility statement for choices of L and compatible local data
(Lemma 4/5-type).

Globalizes by constructing a dual conormal fibration L, over all z € K (Definitions 34,
Lemma 8-type).

Proves existence of smoothing functions of arbitrarily small C' norm (Lemmas 7 and
9-type), ensuring the resulting Lagrangians remain graphical in the chosen neighborhood
globally.

Assembles a Hamiltonian isotopy by concatenating graphical Hamiltonian paths between
successive smoothings (final assembly).

Our solution: what it does

Uses a Maslov-cycle/transversality argument to get a common cotangent chart transverse to
the four tangent planes.

Writes the local model as a graph of df for a continuous piecewise quadratic f and mollifies f.

Attempts global gluing by summing locally supported Hamiltonians from vertex/edge charts.

Differences / what we were missing (detailed checklist)

1.

Missing the stronger vertex normal form: transversality of planes is not enough; the
reference produces a projection that is a homeomorphism on the local quadrant-union model.

. No conormal fibration: we did not construct the global family of fibers L.; without it,

“graphical over varying fibers” is not justified.

Missing smoothing-function formalism: we did not define g5, S(X), nor prove the
bijection between smoothing functions and Lagrangian graphs.



4.

Global gluing gap: “summing Hamiltonians” does not guarantee the intended local behavior
on overlaps (flows do not commute). The reference avoids overlap issues by producing globally-
defined smoothings with small C'! norm.

. Missing the small C! norm existence argument: essential to keep fibers disjoint and

remain in the graphical neighborhood globally.

Edge compatibility mechanism missing: the reference proves contractibility /compatibility
of choices along edges and collars; our proof only sketches local crease smoothing.

9 Question 9 (Miao—Lerman—Kileel): equations for scaled deter-

minant tensors Q%79

Reference solution: what it does

Packages all blocks into a tensor @ € R37x3nx3nx3n

Proves a Tucker decomposition
QZCXlAXQAX3AX4A,

where A = [AD); . .; AM] € R34 and C' € R*>*****4 i a universal “sign/permutation” core
(Lemma 1-type). Concludes multilinear rank < (4,4,4,4).

Defines F' to be exactly the set of all 5 x 5 minors of the four mode-flattenings (degree 5,
independent of n).

“If” direction: rank-1 scaling off-diagonal corresponds to Tucker scaling by invertible diagonal
matrices, preserving multilinear rank, hence all minors vanish.

“Only if” direction: assumes all minors vanish, normalizes A\, and uses three explicit minor
computations (Steps 1-3) to force a rigid pattern:

— entries with two “1”-indices are a constant c,
2

Y

3

)

— with one “1”-index are ¢

— with no “1”-indices are ¢

yielding A = u ® v ® w ® x off-diagonal.

Our solution: what it does

Defines F' as swap quadrics (Pliicker-style) plus the 5 x 5 flattening minors.

Proves the forward direction by exhibiting a rank-< 4 factorization for one flattening (Hodge-
star/inner-product argument).

For the reverse direction, attempts a tangent-space/Hadamard-stabilizer approach and only
claims identifiability on the fully distinct-index set Zops.

Differences / what we were missing (detailed checklist)

1.

2.

Definition of F' differs: reference uses only the flattening minors. Our “swap quadrics” are
not used/needed and complicate the system.

Missing the full Tucker decomposition (all modes): we sketched a mode-wise rank

argument, but did not present the universal core C and the simultaneous multilinear-rank
bound (4,4,4,4).



3. Scope mismatch on indices (major): the theorem concerns all off-diagonal tuples (not all
equal), including repeated-index patterns. Our reverse direction treats only pairwise distinct
indices Zyps, which is strictly weaker.

4. Missing the minors-to-)\ recovery: the reference uses explicit 5 X 5 determinants to force
algebraic equalities among A entries (Steps 1-3). Our tangent-space argument does not yield
these global equalities.

5. Unproven stabilizer lemma: our reverse direction relies on an asserted classification of
Hadamard deformations, which is not established and not the reference method.

10 Question 10 (Kolda): PCG for RKHS tensor mode update
(matrix-free MVP + preconditioning)

Reference solution: what it does
o Notes the symmetric system may be indefinite and adds a pl regularization to enforce SPD.
e Uses K = UDUT and transforms to a system in W.

« Defines restricted objects Z and (row-wise) Kronecker structure so each row of F'is a row-wise
Kronecker product.

e Proves key lemmas enabling fast operations:
— fast computation of C'x exploiting row-wise Kronecker structure,
— formula for CTv,
— fast computation of diag(CTC).
« Uses a diagonal preconditioner based on diag(F?F) + \(I ® D) + pl.

o Gives explicit complexity: per-iteration MVP O(gnr) and storage O(q(n + r)).

Our solution: what it does

« Derives the matrix-free gather/scatter MVP for F'7 Fx and the RKHS regularization term.

e Proposes a Kronecker-structured preconditioner by approximating Pg =~ «f and using
eigendecompositions of K and Z7Z.

Differences / what we were missing (detailed checklist)

1. Definiteness treatment: reference explicitly adds p > 0 to guarantee SPD even when K is
PSD/singular or the system is otherwise indefinite; we did not treat this carefully.

2. Preconditioner choice and justification:

o reference: cheap diagonal preconditioner from explicit diag(C?C) lemmas,

e ours: heavier Kronecker eigen-based preconditioner, not the one justified in the reference.

3. Missing the explicit lemma suite: we used the idea but did not state/prove the clean
algebraic formulas for Cz, CTv, and diag(C7'C) that the reference highlights.

4. Avoiding big-M costs: we suggested forming Z7 Z with complexity depending on the full
product size M ; the reference emphasizes staying in observed-index structures and avoiding
large intermediate constructs.
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