
First Proof: Comparison of Our Solutions with the Reference
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February 14, 2026

Scope and format
This document consolidates (in order Q1–Q10) my prior comparisons between:

• our LaTeX solutions (the ten “q#_proof*.tex” drafts), and

• the reference solutions/comments in FirstProofSolutionsComments.pdf.

For each question, I list:

1. what the reference solution does (key objects, lemmas, spine),

2. what our solution does (as written),

3. a detailed differences / missing pieces checklist.

1 Question 1 (Hairer): non-(quasi)invariance of the Φ4
3 measure

under shifts

Reference solution: what it does

• Works with the stochastic quantization stationary process u(t) whose fixed-time law is µ.

• Uses the decomposition u = −Φ + v where Φ solves the linearized SPDE and v is controlled
by a paracontrolled-type expansion, e.g.

v = −3
(
(v − Ψ) ≺ Φ

)
+ v♯

(cf. their Proposition 4.1-style statement).

• Introduces a key diverging constant cN,2 and proves a lower bound cN,2 ≳ logN (their Lemma
4.3).

• Defines a separating event Bγ (for γ > 1/2) of the form

Bγ =
{

lim
N→∞

(logN)−γ ⟨H3(PNu; cN ) + 9cN,2PNu, ψ⟩ = 0
}

and proves µ(Bγ) = 1 (via Lemmas 4.2, 4.4, 4.5 plus product/commutator estimates).

• Shows that under u 7→ u+ ψ the extra term 9(logN)−γcN,2⟨ψN , ψ⟩ diverges for 1/2 < γ < 1,
so T ∗

ψµ(Bγ) = 0.

• Concludes mutual singularity µ ⊥ T ∗
ψµ for any nonzero smooth shift ψ.
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Our solution: what it does

• Uses a mollifier scale εn = exp(−en) and an observable

Xn = ε3/4
n

(
⟨: u3 :ε, ψ⟩ + C2(ε)⟨uε, ψ⟩

)
,

and claims Xn → 0 in probability under µ but Xn → ∞ under the shifted measure due to a
diverging linear counterterm.

• Implements the correct high-level idea: build an event that has µ-probability 1 but has
T ∗
ψµ-probability 0.

Differences / what we were missing (detailed checklist)

1. Canonical construction not built: the reference works through the stationary SPDE
and the decomposition u = −Φ + v. Our writeup does not establish (or precisely cite) this
representation and the needed control space for v.

2. Wrong/unspecified regularization scheme: reference uses PN and tracks (logN)−γ with
N → ∞; we used a special subsequence εn without justifying equivalence of schemes or
scaling.

3. Missing the exact separating event Bγ: reference uses the specific combinationH3(PNu; cN )+
9cN,2PNu and proves convergence to 0 after scaling; we only asserted a comparable combina-
tion with an unspecified C2(ε).

4. Coefficient and Wick/Hermite structure: the constant 9 and the precise correction
9cN,2PNu come from an explicit Wick/Hermite expansion and renormalization bookkeeping.
We did not derive these constants.

5. Key lemmas missing: we did not prove the analogues of:

• Lemma 4.2: scaled Wick-cubic decay/convergence (γ > 1/2 threshold),
• Lemma 4.4: convergence of polynomial expressions in the cutoff field ΦN ,
• Lemma 4.5: convergence of renormalized quadratic/cross terms,
• Lemma 4.3: logarithmic divergence cN,2 ≳ logN .

6. Parameter regime clarity: reference needs 1/2 < γ < 1 to both kill the cubic term and
make the drift blow up; our exponent 3/4 was hard-coded and not justified as part of a
general γ-scheme.

2 Question 2 (Nelson): Rankin–Selberg test vector, single W
for all π

Reference solution: what it does

• Constructs a single Whittaker function W ∈ W(Π, ψ−1) that works uniformly for all
representations π of fixed conductor.

• Uses the Godement–Jacquet functional equation and Mellin inversion, defining a
carefully chosen test function β and its transform β♯ adapted to π’s γ-factor.

• Reduces the shifted Rankin–Selberg integral to an integral over a congruence subgroup
K1(q) and uses newvector theory to prove the integral is nonzero for all s.

• Links the twist parameter uQ to the conductor by choosing Q generating q−1.
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Our solution: what it does

• Starts from a Kn-fixed vector in π and constructs W by prescribing compactly-supported
Kirillov/Whittaker data so that the integrand is “constant” on its support, turning the
integral into a volume.

Differences / what we were missing (detailed checklist)

1. Fatal requirement mismatch: our W depends on π (through the chosen Kn-fixed vector).
The problem requires one W depending only on Π, valid for all π of a given conductor.

2. Constant-on-support strategy fails in general: already for n = 1 the integral becomes a
Gauss sum and the integrand cannot be constant; in higher rank central character obstructions
persist (as stressed in the reference comments).

3. Missing the core analytic engine: no Godement–Jacquet functional equation, no Mellin
inversion, no β/β♯ mechanism tied to γ-factors.

4. Missing the newvector/congruence subgroup reduction: reference reduces to K1(q)
and uses newvector theory to force nonvanishing for all s; we do not.

5. Conductor linkage not used: the choice of Q is tied to π’s conductor in the reference; our
proof treats Q as an external parameter without exploiting ε-factor structure.

3 Question 3 (Williams): Markov chain with stationary measure
from F ∗

µ(·; q=1, t)
Reference solution: what it does

• Constructs a nontrivial, explicit chain (“interpolation t-PushTASEP”-type) whose tran-
sitions are defined probabilistically/combinatorially, not by quoting F ∗ to define the
kernel.

• Proves stationarity using two-line queues / (signed) queue combinatorics and weight
identities matching the interpolation ASEP/Macdonald objects specialized at q = 1.

• Uses the “restricted” hypothesis (unique 0, no 1’s) as a structural input in the queue/weight
algebra.

Our solution: what it does

• Proposes an adjacent transposition chain with swap probabilities involving rational functions
like xi−txi+1

xi−xi+1
.

• Claims stationarity by an asserted exchange ratio identity F ∗
siµ/F

∗
µ matching the swap-rate

ratio.

Differences / what we were missing (detailed checklist)

1. Wrong chain: the reference chain is not a simple adjacent-swap process; it is a global push
process with additional structure.

2. Hidden dependence on the polynomials: while our transition rule does not explicitly
mention F ∗, our verification relies on an unproved identity about F ∗

siµ/F
∗
µ ; this is essentially

the failure mode the comments highlight for “Metropolis–Hastings-like” approaches.
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3. Missing the combinatorial proof framework: no two-line queues, no signed queues, no
weight-generating argument.

4. Kernel validity not established: positivity/stochasticity (probabilities in [0, 1] and row-
sums 1) is not proven carefully for the parameter domain.

4 Question 4 (Garza Vargas–Srivastava–Stier): finite free Stam
inequality

Reference solution: what it does

• Works on ordered roots and defines the root map Ω⊞n(α, β) = γ via

p⊞n q =
∑
π∈Sn

n∏
i=1

(x− αi − βπ(i)).

• Defines the score vector Jn(α)i =
∑
j ̸=i(αi − αj)−1 and Φn(p) = ∥Jn(α)∥2.

• Uses reverse heat flow on roots (Lemma 1.1-style) and the key identity (Obs. 2.1)

J⊞n(aJn(α), bJn(β)) = (a+ b)Jn(γ).

• Proves the Jacobian contraction on a codimension-2 subspace V :

∥J⊞n(u, v)∥2 ≤ ∥u∥2 + ∥v∥2

(Prop. 2.1), via a Hessian identity + hyperbolic polynomial convexity (Bauschke et al.).

• Concludes (a+ b)2Φ(γ) ≤ a2Φ(α) + b2Φ(β) and optimizes a, b to obtain Stam.

Our solution: what it does

• Uses an operator/differential viewpoint, introduces a semigroup, and asserts a Blachman/Stam-
type inequality from a “spectral lower bound” lemma, without establishing the Jacobian/Hessian/hyperbolicity
machinery.

Differences / what we were missing (detailed checklist)

1. Missing the central geometric object: we did not build Ω⊞n and its Jacobian J⊞n as the
main proof driver.

2. Missing Observation 2.1 (the way scores transform through Ω⊞n under reverse heat flow),
which is the bridge from dynamics to the inequality.

3. Missing the hard step (Prop. 2.1): we did not prove the contraction inequality. The
reference proves it via:

• a Hessian identity expressing J⊞nJ
∗
⊞n

in terms of Hessians of Ωi on V , and
• PSD-ness of certain Hessian combinations coming from hyperbolic polynomial convexity.

4. Our “spectral lower bound” is not a substitute for the Hessian/PSD argument and
leaves a gap.

5. Multiplicity handling: reference deals with multiple roots via perturbation/continuity; we
did not execute this rigorously.
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5 Question 5 (Hill–Lawson–Hill): O-slice connectivity via geo-
metric fixed points

Reference solution: what it does

• Works with an incomplete transfer system O and admissible H-sets T =
⊔
H/Ki with

Ki → H.

• Defines τO≥n as the localizing subcategory generated by norms NTS1 with |T | ≥ n, using
NTS1 ≃ SR·T .

• Introduces the characteristic subgroup χO(H) and proves the numerical characterization
(Theorem 2.7):

E ∈ τO≥n ⇐⇒ ∀H ≤ G, [H : χO(H)] · gconn(E)(H) ≥ n.

• Proves the forward direction by computing geometric fixed points of generators (Lemma
2.3-type orbit count bound).

• Proves the converse using isotropy separation and a slice computation for geometric Mackey
functors (Lemmas 2.5–2.6).

Our solution: what it does

• States a criterion in terms of geometric fixed points ΦH(X) being λH(n)-connective, with

λH(n) = min{|T/H| : T ∈ O(H), |T | ≥ n}.

• Argues via isotropy separation + “geometric part” reduction, with a compressed localizing-
subcategory argument.

Differences / what we were missing (detailed checklist)

1. Missing the characteristic subgroup formulation: we did not define χO(H) nor
state/prove the clean formula with [H : χO(H)].

2. Missing the link λH(n) = ⌈n/[H : χO(H)]⌉: to reconcile our λH with the reference, one
must prove this numerical identity and translate it into the [H : χO(H)] · gconn condition.

3. Forward lemma missing: we did not reproduce the reference’s precise orbit-count inequality
(geometric fixed points of the generators).

4. Converse mechanism missing: we did not reproduce the isotropy separation criterion
plus the key lemma computing slices of ΣkHM (geometric Mackey functors).

5. Categorical infrastructure omitted: truncation/cover functors and discreteness results
are part of the reference proof’s spine (even if not strictly required for the bare equivalence).

6 Question 6 (Spielman): existence of an ε-light set of size ≥ cεn

Reference solution: what it does

• Proves the statement with an explicit constant, e.g. c = 1/42, giving |S| ≥ εn/42.

• Uses a greedy iterative selection with two maintained invariants:

– a leverage-score (mass) control for the selected set,
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– a spectral barrier potential controlling the top eigenvalues throughout the process.

• Works in a normalized image space (e.g. Laplacian image), using eigenvalue inequalities (Ky
Fan trace-type) and counting to show many “good” vertices exist at each step.

Our solution: what it does

• Proves an upper bound obstruction: any universal constant must satisfy c ≤ 1/2 (perfect
matching example).

• Gives a linearization reduction and isolates a conjectural subset-selection condition; shows an
analogous statement fails for arbitrary PSD families.

Differences / what we were missing (detailed checklist)

1. We do not prove any positive constant c > 0. The reference proves existence with an
explicit positive constant; our writeup only provides an obstruction and partial reductions.

2. Missing the full constructive method: no greedy algorithm with explicit invariants, no
barrier potential, no iteration analysis establishing progress.

3. Mismatch in technical route: we relax to a linearized PSD-sum statement; the reference
controls the actual LS behavior via sharper spectral arguments tailored to the graph Laplacian
structure.

7 Question 7 (Weinberger): uniform lattice with 2-torsion vs
rationally acyclic universal cover

Reference solution: what it does

• Uses lattice-specific structure: reduces to an extension Γ = π ⋊ Z2 with π a torsion-free
lattice.

• Employs rigidity/higher-signature technology (Novikov/assembly injectivity, symmetric
signatures, and cobordism/fixed-set arguments) to contradict rational acyclicity of M̃ under
the presence of Z/2-torsion in Γ.

• Key point: the obstruction is not purely Smith theory; it is a lattice/rigidity phenomenon.

Our solution: what it does

• Proves a different claim under a stronger hypothesis: if M̃ is integrally acyclic (hence mod-p
acyclic), then π1(M) is torsion-free, using Smith fixed-point theory plus a deck transformation
argument.

Differences / what we were missing (detailed checklist)

1. Hypothesis mismatch (fatal): the problem assumes only Q-acyclicity, not Z-acyclicity.
From Q-acyclic you cannot deduce mod-2 acyclicity; thus Smith theory does not apply as we
used it.

2. We ignored the essential lattice input: in the rational setting, the reference needs the
lattice/semisimple structure and the rigidity tools; our proof does not use them.
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3. Known counter-phenomena: the comments stress that many “pure Smith” arguments fail
because there exist rationally acyclic spaces admitting free Z/2-actions in other contexts; the
lattice assumption is precisely what blocks these.

4. Missing the higher-signature / assembly-map argument that drives the reference
proof.

8 Question 8 (Abouzaid): Lagrangian smoothing of a polyhedral
Lagrangian surface

Reference solution: what it does

• Proves a sharp linear-algebra normal form at a vertex meeting four faces: after a linear
symplectic change, the local model is a product of a standard “positive axes union” with R2

(Lemma 1-type).

• Deduces existence of a Lagrangian plane L so that the symplectic-pairing projection Σ → L∨

is a homeomorphism (Corollary 1-type), not just transverse.

• Introduces smoothing functions S(Σ) via a canonical C1 function qΣ (piecewise quadratic),
and proves a bijection: smoothing functions (mod constants) ↔ graphical Lagrangians near
Σ (Lemma 3 / Lemma 6-type).

• Handles edges using a contractibility statement for choices of L and compatible local data
(Lemma 4/5-type).

• Globalizes by constructing a dual conormal fibration Lz over all z ∈ K (Definitions 3–4,
Lemma 8-type).

• Proves existence of smoothing functions of arbitrarily small C1 norm (Lemmas 7 and
9-type), ensuring the resulting Lagrangians remain graphical in the chosen neighborhood
globally.

• Assembles a Hamiltonian isotopy by concatenating graphical Hamiltonian paths between
successive smoothings (final assembly).

Our solution: what it does

• Uses a Maslov-cycle/transversality argument to get a common cotangent chart transverse to
the four tangent planes.

• Writes the local model as a graph of df for a continuous piecewise quadratic f and mollifies f .

• Attempts global gluing by summing locally supported Hamiltonians from vertex/edge charts.

Differences / what we were missing (detailed checklist)

1. Missing the stronger vertex normal form: transversality of planes is not enough; the
reference produces a projection that is a homeomorphism on the local quadrant-union model.

2. No conormal fibration: we did not construct the global family of fibers Lz; without it,
“graphical over varying fibers” is not justified.

3. Missing smoothing-function formalism: we did not define qΣ, S(Σ), nor prove the
bijection between smoothing functions and Lagrangian graphs.
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4. Global gluing gap: “summing Hamiltonians” does not guarantee the intended local behavior
on overlaps (flows do not commute). The reference avoids overlap issues by producing globally-
defined smoothings with small C1 norm.

5. Missing the small C1 norm existence argument: essential to keep fibers disjoint and
remain in the graphical neighborhood globally.

6. Edge compatibility mechanism missing: the reference proves contractibility/compatibility
of choices along edges and collars; our proof only sketches local crease smoothing.

9 Question 9 (Miao–Lerman–Kileel): equations for scaled deter-
minant tensors Q(αβγδ)

Reference solution: what it does

• Packages all blocks into a tensor Q ∈ R3n×3n×3n×3n.

• Proves a Tucker decomposition

Q = C ×1 A×2 A×3 A×4 A,

where A = [A(1); . . . ;A(n)] ∈ R3n×4 and C ∈ R4×4×4×4 is a universal “sign/permutation” core
(Lemma 1-type). Concludes multilinear rank ≤ (4, 4, 4, 4).

• Defines F to be exactly the set of all 5 × 5 minors of the four mode-flattenings (degree 5,
independent of n).

• “If” direction: rank-1 scaling off-diagonal corresponds to Tucker scaling by invertible diagonal
matrices, preserving multilinear rank, hence all minors vanish.

• “Only if” direction: assumes all minors vanish, normalizes λ, and uses three explicit minor
computations (Steps 1–3) to force a rigid pattern:

– entries with two “1”-indices are a constant c,
– with one “1”-index are c2,
– with no “1”-indices are c3,

yielding λ = u⊗ v ⊗ w ⊗ x off-diagonal.

Our solution: what it does

• Defines F as swap quadrics (Plücker-style) plus the 5 × 5 flattening minors.

• Proves the forward direction by exhibiting a rank-≤ 4 factorization for one flattening (Hodge-
star/inner-product argument).

• For the reverse direction, attempts a tangent-space/Hadamard-stabilizer approach and only
claims identifiability on the fully distinct-index set Iobs.

Differences / what we were missing (detailed checklist)

1. Definition of F differs: reference uses only the flattening minors. Our “swap quadrics” are
not used/needed and complicate the system.

2. Missing the full Tucker decomposition (all modes): we sketched a mode-wise rank
argument, but did not present the universal core C and the simultaneous multilinear-rank
bound (4, 4, 4, 4).
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3. Scope mismatch on indices (major): the theorem concerns all off-diagonal tuples (not all
equal), including repeated-index patterns. Our reverse direction treats only pairwise distinct
indices Iobs, which is strictly weaker.

4. Missing the minors-to-λ recovery: the reference uses explicit 5 × 5 determinants to force
algebraic equalities among λ entries (Steps 1–3). Our tangent-space argument does not yield
these global equalities.

5. Unproven stabilizer lemma: our reverse direction relies on an asserted classification of
Hadamard deformations, which is not established and not the reference method.

10 Question 10 (Kolda): PCG for RKHS tensor mode update
(matrix-free MVP + preconditioning)

Reference solution: what it does

• Notes the symmetric system may be indefinite and adds a ρI regularization to enforce SPD.

• Uses K = UDUT and transforms to a system in W̄ .

• Defines restricted objects Ẑ and (row-wise) Kronecker structure so each row of F is a row-wise
Kronecker product.

• Proves key lemmas enabling fast operations:

– fast computation of Cx exploiting row-wise Kronecker structure,
– formula for CT v,
– fast computation of diag(CTC).

• Uses a diagonal preconditioner based on diag(F̄ T F̄ ) + λ(I ⊗D) + ρI.

• Gives explicit complexity: per-iteration MVP O(qnr) and storage O(q(n+ r)).

Our solution: what it does

• Derives the matrix-free gather/scatter MVP for F TFx and the RKHS regularization term.

• Proposes a Kronecker-structured preconditioner by approximating PΩ ≈ αI and using
eigendecompositions of K and ZTZ.

Differences / what we were missing (detailed checklist)

1. Definiteness treatment: reference explicitly adds ρ > 0 to guarantee SPD even when K is
PSD/singular or the system is otherwise indefinite; we did not treat this carefully.

2. Preconditioner choice and justification:

• reference: cheap diagonal preconditioner from explicit diag(CTC) lemmas,
• ours: heavier Kronecker eigen-based preconditioner, not the one justified in the reference.

3. Missing the explicit lemma suite: we used the idea but did not state/prove the clean
algebraic formulas for Cx, CT v, and diag(CTC) that the reference highlights.

4. Avoiding big-M costs: we suggested forming ZTZ with complexity depending on the full
product size M ; the reference emphasizes staying in observed-index structures and avoiding
large intermediate constructs.
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