

# First Proof: Comparison of Our Solutions with the Reference Solutions (Q1–Q10)

February 14, 2026

## Scope and format

This document consolidates (in order Q1–Q10) my prior comparisons between:

- **our LaTeX solutions** (the ten “q#\_proof\*.tex” drafts), and
- the **reference solutions/comments** in `FirstProofSolutionsComments.pdf`.

For each question, I list:

1. what the **reference** solution does (key objects, lemmas, spine),
2. what **our** solution does (as written),
3. a **detailed differences / missing pieces** checklist.

## 1 Question 1 (Hairer): non-(quasi)invariance of the $\Phi_3^4$ measure under shifts

### Reference solution: what it does

- Works with the *stochastic quantization* stationary process  $u(t)$  whose fixed-time law is  $\mu$ .
- Uses the decomposition  $u = -\Phi + v$  where  $\Phi$  solves the linearized SPDE and  $v$  is controlled by a *paracontrolled-type* expansion, e.g.

$$v = -3((v - \Psi) \prec \Phi) + v^\sharp$$

(cf. their Proposition 4.1-style statement).

- Introduces a key diverging constant  $c_{N,2}$  and proves a lower bound  $c_{N,2} \gtrsim \log N$  (their Lemma 4.3).
- Defines a *separating event*  $B_\gamma$  (for  $\gamma > 1/2$ ) of the form

$$B_\gamma = \left\{ \lim_{N \rightarrow \infty} (\log N)^{-\gamma} \langle H_3(P_N u; c_N) + 9c_{N,2} P_N u, \psi \rangle = 0 \right\}$$

and proves  $\mu(B_\gamma) = 1$  (via Lemmas 4.2, 4.4, 4.5 plus product/commutator estimates).

- Shows that under  $u \mapsto u + \psi$  the extra term  $9(\log N)^{-\gamma} c_{N,2} \langle \psi_N, \psi \rangle$  diverges for  $1/2 < \gamma < 1$ , so  $T_\psi^* \mu(B_\gamma) = 0$ .
- Concludes *mutual singularity*  $\mu \perp T_\psi^* \mu$  for any nonzero smooth shift  $\psi$ .

## Our solution: what it does

- Uses a mollifier scale  $\varepsilon_n = \exp(-e^n)$  and an observable

$$X_n = \varepsilon_n^{3/4} \left( \langle :u^3:_{\varepsilon}, \psi \rangle + C_2(\varepsilon) \langle u_{\varepsilon}, \psi \rangle \right),$$

and claims  $X_n \rightarrow 0$  in probability under  $\mu$  but  $X_n \rightarrow \infty$  under the shifted measure due to a diverging linear counterterm.

- Implements the correct *high-level* idea: build an event that has  $\mu$ -probability 1 but has  $T_{\psi}^* \mu$ -probability 0.

## Differences / what we were missing (detailed checklist)

1. **Canonical construction not built:** the reference works through the stationary SPDE and the decomposition  $u = -\Phi + v$ . Our writeup does not establish (or precisely cite) this representation and the needed control space for  $v$ .
2. **Wrong/unspecified regularization scheme:** reference uses  $P_N$  and tracks  $(\log N)^{-\gamma}$  with  $N \rightarrow \infty$ ; we used a special subsequence  $\varepsilon_n$  without justifying equivalence of schemes or scaling.
3. **Missing the exact separating event  $B_{\gamma}$ :** reference uses the specific combination  $H_3(P_N u; c_N) + 9c_{N,2} P_N u$  and proves convergence to 0 after scaling; we only asserted a comparable combination with an unspecified  $C_2(\varepsilon)$ .
4. **Coefficient and Wick/Hermite structure:** the constant 9 and the precise correction  $9c_{N,2} P_N u$  come from an explicit Wick/Hermite expansion and renormalization bookkeeping. We did not derive these constants.
5. **Key lemmas missing:** we did not prove the analogues of:
  - Lemma 4.2: scaled Wick-cubic decay/convergence ( $\gamma > 1/2$  threshold),
  - Lemma 4.4: convergence of polynomial expressions in the cutoff field  $\Phi_N$ ,
  - Lemma 4.5: convergence of renormalized quadratic/cross terms,
  - Lemma 4.3: logarithmic divergence  $c_{N,2} \gtrsim \log N$ .
6. **Parameter regime clarity:** reference needs  $1/2 < \gamma < 1$  to both kill the cubic term and make the drift blow up; our exponent  $3/4$  was hard-coded and not justified as part of a general  $\gamma$ -scheme.

## 2 Question 2 (Nelson): Rankin–Selberg test vector, single $W$ for all $\pi$

### Reference solution: what it does

- Constructs a **single** Whittaker function  $W \in \mathcal{W}(\Pi, \psi^{-1})$  that works **uniformly for all** representations  $\pi$  of fixed conductor.
- Uses the **Godement–Jacquet functional equation** and **Mellin inversion**, defining a carefully chosen test function  $\beta$  and its transform  $\beta^{\sharp}$  adapted to  $\pi$ 's  $\gamma$ -factor.
- Reduces the shifted Rankin–Selberg integral to an integral over a **congruence subgroup**  $K_1(\mathfrak{q})$  and uses **newvector theory** to prove the integral is **nonzero for all  $s$** .
- Links the twist parameter  $u_Q$  to the conductor by choosing  $Q$  generating  $\mathfrak{q}^{-1}$ .

### Our solution: what it does

- Starts from a  $K_n$ -fixed vector in  $\pi$  and constructs  $W$  by prescribing compactly-supported Kirillov/Whittaker data so that the integrand is “constant” on its support, turning the integral into a volume.

### Differences / what we were missing (detailed checklist)

- Fatal requirement mismatch:** our  $W$  depends on  $\pi$  (through the chosen  $K_n$ -fixed vector). The problem requires **one**  $W$  depending only on  $\Pi$ , valid for **all**  $\pi$  of a given conductor.
- Constant-on-support strategy fails in general:** already for  $n = 1$  the integral becomes a Gauss sum and the integrand cannot be constant; in higher rank central character obstructions persist (as stressed in the reference comments).
- Missing the core analytic engine:** no Godement–Jacquet functional equation, no Mellin inversion, no  $\beta/\beta^\sharp$  mechanism tied to  $\gamma$ -factors.
- Missing the newvector/congruence subgroup reduction:** reference reduces to  $K_1(\mathfrak{q})$  and uses newvector theory to force nonvanishing for all  $s$ ; we do not.
- Conductor linkage not used:** the choice of  $Q$  is tied to  $\pi$ ’s conductor in the reference; our proof treats  $Q$  as an external parameter without exploiting  $\varepsilon$ -factor structure.

### 3 Question 3 (Williams): Markov chain with stationary measure from $F_\mu^*(\cdot; q=1, t)$

#### Reference solution: what it does

- Constructs a **nontrivial, explicit** chain (“interpolation  $t$ -PushTASEP”-type) whose transitions are defined **probabilistically/combinatorially**, not by quoting  $F^*$  to define the kernel.
- Proves stationarity using **two-line queues** / (signed) queue combinatorics and weight identities matching the interpolation ASEP/Macdonald objects specialized at  $q = 1$ .
- Uses the “restricted” hypothesis (unique 0, no 1’s) as a structural input in the queue/weight algebra.

#### Our solution: what it does

- Proposes an adjacent transposition chain with swap probabilities involving rational functions like  $\frac{x_i - tx_{i+1}}{x_i - x_{i+1}}$ .
- Claims stationarity by an asserted exchange ratio identity  $F_{s_i \mu}^* / F_\mu^*$  matching the swap-rate ratio.

### Differences / what we were missing (detailed checklist)

- Wrong chain:** the reference chain is not a simple adjacent-swap process; it is a global push process with additional structure.
- Hidden dependence on the polynomials:** while our transition rule does not explicitly mention  $F^*$ , our verification relies on an unproved identity about  $F_{s_i \mu}^* / F_\mu^*$ ; this is essentially the failure mode the comments highlight for “Metropolis–Hastings-like” approaches.

3. **Missing the combinatorial proof framework:** no two-line queues, no signed queues, no weight-generating argument.
4. **Kernel validity not established:** positivity/stochasticity (probabilities in  $[0, 1]$  and row-sums 1) is not proven carefully for the parameter domain.

## 4 Question 4 (Garza Vargas–Srivastava–Stier): finite free Stam inequality

### Reference solution: what it does

- Works on ordered roots and defines the root map  $\Omega_{\boxplus_n}(\alpha, \beta) = \gamma$  via

$$p \boxplus_n q = \sum_{\pi \in S_n} \prod_{i=1}^n (x - \alpha_i - \beta_{\pi(i)}).$$

- Defines the **score vector**  $J_n(\alpha)_i = \sum_{j \neq i} (\alpha_i - \alpha_j)^{-1}$  and  $\Phi_n(p) = \|J_n(\alpha)\|^2$ .
- Uses reverse heat flow on roots (Lemma 1.1-style) and the key identity (Obs. 2.1)

$$J_{\boxplus_n}(aJ_n(\alpha), bJ_n(\beta)) = (a+b)J_n(\gamma).$$

- Proves the **Jacobian contraction** on a codimension-2 subspace  $V$ :

$$\|J_{\boxplus_n}(u, v)\|^2 \leq \|u\|^2 + \|v\|^2$$

(Prop. 2.1), via a Hessian identity + **hyperbolic polynomial convexity** (Bauschke et al.).

- Concludes  $(a+b)^2\Phi(\gamma) \leq a^2\Phi(\alpha) + b^2\Phi(\beta)$  and optimizes  $a, b$  to obtain Stam.

### Our solution: what it does

- Uses an operator/differential viewpoint, introduces a semigroup, and asserts a Blachman/Stam-type inequality from a “spectral lower bound” lemma, without establishing the Jacobian/Hessian/hyperbolicity machinery.

### Differences / what we were missing (detailed checklist)

1. **Missing the central geometric object:** we did not build  $\Omega_{\boxplus_n}$  and its Jacobian  $J_{\boxplus_n}$  as the main proof driver.
2. **Missing Observation 2.1** (the way scores transform through  $\Omega_{\boxplus_n}$  under reverse heat flow), which is the bridge from dynamics to the inequality.
3. **Missing the hard step (Prop. 2.1):** we did not prove the contraction inequality. The reference proves it via:
  - a Hessian identity expressing  $J_{\boxplus_n} J_{\boxplus_n}^*$  in terms of Hessians of  $\Omega_i$  on  $V$ , and
  - PSD-ness of certain Hessian combinations coming from hyperbolic polynomial convexity.
4. **Our “spectral lower bound” is not a substitute** for the Hessian/PSD argument and leaves a gap.
5. **Multiplicity handling:** reference deals with multiple roots via perturbation/continuity; we did not execute this rigorously.

## 5 Question 5 (Hill–Lawson–Hill): $O$ -slice connectivity via geometric fixed points

### Reference solution: what it does

- Works with an incomplete transfer system  $O$  and admissible  $H$ -sets  $T = \bigsqcup H/K_i$  with  $K_i \rightarrow H$ .
- Defines  $\tau_{\geq n}^O$  as the localizing subcategory generated by norms  $N^T S^1$  with  $|T| \geq n$ , using  $N^T S^1 \simeq S^{\mathbb{R} \cdot T}$ .
- Introduces the **characteristic subgroup**  $\chi_O(H)$  and proves the numerical characterization (Theorem 2.7):

$$E \in \tau_{\geq n}^O \iff \forall H \leq G, [H : \chi_O(H)] \cdot \text{gconn}(E)(H) \geq n.$$

- Proves the forward direction by computing geometric fixed points of generators (Lemma 2.3-type orbit count bound).
- Proves the converse using isotropy separation and a slice computation for geometric Mackey functors (Lemmas 2.5–2.6).

### Our solution: what it does

- States a criterion in terms of geometric fixed points  $\Phi^H(X)$  being  $\lambda_H(n)$ -connective, with
$$\lambda_H(n) = \min\{|T/H| : T \in O(H), |T| \geq n\}.$$
- Argues via isotropy separation + “geometric part” reduction, with a compressed localizing-subcategory argument.

### Differences / what we were missing (detailed checklist)

1. **Missing the characteristic subgroup formulation:** we did not define  $\chi_O(H)$  nor state/prove the clean formula with  $[H : \chi_O(H)]$ .
2. **Missing the link**  $\lambda_H(n) = [n/[H : \chi_O(H)]]$ : to reconcile our  $\lambda_H$  with the reference, one must prove this numerical identity and translate it into the  $[H : \chi_O(H)] \cdot \text{gconn}$  condition.
3. **Forward lemma missing:** we did not reproduce the reference’s precise orbit-count inequality (geometric fixed points of the generators).
4. **Converse mechanism missing:** we did not reproduce the isotropy separation criterion plus the key lemma computing slices of  $\Sigma^k HM$  (geometric Mackey functors).
5. **Categorical infrastructure omitted:** truncation/cover functors and discreteness results are part of the reference proof’s spine (even if not strictly required for the bare equivalence).

## 6 Question 6 (Spielman): existence of an $\varepsilon$ -light set of size $\geq c\varepsilon n$

### Reference solution: what it does

- Proves the statement with an explicit constant, e.g.  $c = 1/42$ , giving  $|S| \geq \varepsilon n/42$ .
- Uses a **greedy iterative selection** with two maintained invariants:
  - a leverage-score (mass) control for the selected set,

- a **spectral barrier potential** controlling the top eigenvalues throughout the process.
- Works in a normalized image space (e.g. Laplacian image), using eigenvalue inequalities (Ky Fan trace-type) and counting to show many “good” vertices exist at each step.

### Our solution: what it does

- Proves an **upper bound obstruction**: any universal constant must satisfy  $c \leq 1/2$  (perfect matching example).
- Gives a linearization reduction and isolates a conjectural subset-selection condition; shows an analogous statement fails for arbitrary PSD families.

### Differences / what we were missing (detailed checklist)

1. **We do not prove any positive constant  $c > 0$ .** The reference proves existence with an explicit positive constant; our writeup only provides an obstruction and partial reductions.
2. **Missing the full constructive method:** no greedy algorithm with explicit invariants, no barrier potential, no iteration analysis establishing progress.
3. **Mismatch in technical route:** we relax to a linearized PSD-sum statement; the reference controls the actual  $L_S$  behavior via sharper spectral arguments tailored to the graph Laplacian structure.

## 7 Question 7 (Weinberger): uniform lattice with 2-torsion vs rationally acyclic universal cover

### Reference solution: what it does

- Uses **lattice-specific structure**: reduces to an extension  $\Gamma = \pi \rtimes \mathbb{Z}_2$  with  $\pi$  a torsion-free lattice.
- Employs **rigidity/higher-signature** technology (Novikov/assembly injectivity, symmetric signatures, and cobordism/fixed-set arguments) to contradict rational acyclicity of  $\widetilde{M}$  under the presence of  $\mathbb{Z}/2$ -torsion in  $\Gamma$ .
- Key point: the obstruction is **not** purely Smith theory; it is a lattice/rigidity phenomenon.

### Our solution: what it does

- Proves a *different* claim under a stronger hypothesis: if  $\widetilde{M}$  is **integrally acyclic** (hence mod- $p$  acyclic), then  $\pi_1(M)$  is torsion-free, using Smith fixed-point theory plus a deck transformation argument.

### Differences / what we were missing (detailed checklist)

1. **Hypothesis mismatch (fatal):** the problem assumes only  $\mathbb{Q}$ -acyclicity, not  $\mathbb{Z}$ -acyclicity. From  $\mathbb{Q}$ -acyclic you *cannot* deduce mod-2 acyclicity; thus Smith theory does not apply as we used it.
2. **We ignored the essential lattice input:** in the rational setting, the reference needs the lattice/semisimple structure and the rigidity tools; our proof does not use them.

3. **Known counter-phenomena:** the comments stress that many “pure Smith” arguments fail because there exist rationally acyclic spaces admitting free  $\mathbb{Z}/2$ -actions in other contexts; the lattice assumption is precisely what blocks these.
4. **Missing the higher-signature / assembly-map argument** that drives the reference proof.

## 8 Question 8 (Abouzaid): Lagrangian smoothing of a polyhedral Lagrangian surface

### Reference solution: what it does

- Proves a sharp **linear-algebra normal form** at a vertex meeting four faces: after a linear symplectic change, the local model is a product of a standard “positive axes union” with  $\mathbb{R}^2$  (Lemma 1-type).
- Deduces existence of a Lagrangian plane  $L$  so that the symplectic-pairing projection  $\Sigma \rightarrow L^\vee$  is a **homeomorphism** (Corollary 1-type), not just transverse.
- Introduces **smoothing functions**  $S(\Sigma)$  via a canonical  $C^1$  function  $q_\Sigma$  (piecewise quadratic), and proves a bijection: smoothing functions (mod constants)  $\leftrightarrow$  graphical Lagrangians near  $\Sigma$  (Lemma 3 / Lemma 6-type).
- Handles edges using a **contractibility** statement for choices of  $L$  and compatible local data (Lemma 4/5-type).
- Globalizes by constructing a **dual conormal fibration**  $L_z$  over all  $z \in K$  (Definitions 3–4, Lemma 8-type).
- Proves existence of smoothing functions of **arbitrarily small  $C^1$  norm** (Lemmas 7 and 9-type), ensuring the resulting Lagrangians remain graphical in the chosen neighborhood globally.
- Assembles a **Hamiltonian isotopy** by concatenating graphical Hamiltonian paths between successive smoothings (final assembly).

### Our solution: what it does

- Uses a Maslov-cycle/transversality argument to get a common cotangent chart transverse to the four tangent planes.
- Writes the local model as a graph of  $df$  for a continuous piecewise quadratic  $f$  and mollifies  $f$ .
- Attempts global gluing by summing locally supported Hamiltonians from vertex/edge charts.

### Differences / what we were missing (detailed checklist)

1. **Missing the stronger vertex normal form:** transversality of planes is not enough; the reference produces a projection that is a *homeomorphism* on the local quadrant-union model.
2. **No conormal fibration:** we did not construct the global family of fibers  $L_z$ ; without it, “graphical over varying fibers” is not justified.
3. **Missing smoothing-function formalism:** we did not define  $q_\Sigma$ ,  $S(\Sigma)$ , nor prove the bijection between smoothing functions and Lagrangian graphs.

4. **Global gluing gap:** “summing Hamiltonians” does not guarantee the intended local behavior on overlaps (flows do not commute). The reference avoids overlap issues by producing globally-defined smoothings with small  $C^1$  norm.
5. **Missing the small  $C^1$  norm existence argument:** essential to keep fibers disjoint and remain in the graphical neighborhood globally.
6. **Edge compatibility mechanism missing:** the reference proves contractibility/compatibility of choices along edges and collars; our proof only sketches local crease smoothing.

## 9 Question 9 (Miao–Lerman–Kileel): equations for scaled determinant tensors $Q^{(\alpha\beta\gamma\delta)}$

### Reference solution: what it does

- Packages all blocks into a tensor  $Q \in \mathbb{R}^{3n \times 3n \times 3n \times 3n}$ .
- Proves a **Tucker decomposition**

$$Q = C \times_1 A \times_2 A \times_3 A \times_4 A,$$

where  $A = [A^{(1)}; \dots; A^{(n)}] \in \mathbb{R}^{3n \times 4}$  and  $C \in \mathbb{R}^{4 \times 4 \times 4 \times 4}$  is a universal “sign/permuation” core (Lemma 1-type). Concludes multilinear rank  $\leq (4, 4, 4, 4)$ .

- Defines  $F$  to be **exactly the set of all  $5 \times 5$  minors** of the four mode-flattenings (degree 5, independent of  $n$ ).
- “If” direction: rank-1 scaling off-diagonal corresponds to Tucker scaling by invertible diagonal matrices, preserving multilinear rank, hence all minors vanish.
- “Only if” direction: assumes all minors vanish, normalizes  $\lambda$ , and uses **three explicit minor computations** (Steps 1–3) to force a rigid pattern:
  - entries with two “1”-indices are a constant  $c$ ,
  - with one “1”-index are  $c^2$ ,
  - with no “1”-indices are  $c^3$ ,
yielding  $\lambda = u \otimes v \otimes w \otimes x$  off-diagonal.

### Our solution: what it does

- Defines  $F$  as *swap quadrics* (Plücker-style) **plus** the  $5 \times 5$  flattening minors.
- Proves the forward direction by exhibiting a rank- $\leq 4$  factorization for one flattening (Hodge-star/inner-product argument).
- For the reverse direction, attempts a tangent-space/Hadamard-stabilizer approach and only claims identifiability on the fully distinct-index set  $\mathcal{I}_{\text{obs}}$ .

### Differences / what we were missing (detailed checklist)

1. **Definition of  $F$  differs:** reference uses *only* the flattening minors. Our “swap quadrics” are not used/needed and complicate the system.
2. **Missing the full Tucker decomposition (all modes):** we sketched a mode-wise rank argument, but did not present the universal core  $C$  and the simultaneous multilinear-rank bound  $(4, 4, 4, 4)$ .

3. **Scope mismatch on indices (major):** the theorem concerns *all off-diagonal* tuples (not all equal), including repeated-index patterns. Our reverse direction treats only pairwise distinct indices  $\mathcal{I}_{\text{obs}}$ , which is strictly weaker.
4. **Missing the minors-to- $\lambda$  recovery:** the reference uses explicit  $5 \times 5$  determinants to force algebraic equalities among  $\lambda$  entries (Steps 1–3). Our tangent-space argument does not yield these global equalities.
5. **Unproven stabilizer lemma:** our reverse direction relies on an asserted classification of Hadamard deformations, which is not established and not the reference method.

## 10 Question 10 (Kolda): PCG for RKHS tensor mode update (matrix-free MVP + preconditioning)

### Reference solution: what it does

- Notes the symmetric system may be **indefinite** and adds a  $\rho I$  regularization to enforce SPD.
- Uses  $K = UDU^T$  and transforms to a system in  $\bar{W}$ .
- Defines restricted objects  $\hat{Z}$  and (row-wise) Kronecker structure so each row of  $F$  is a **row-wise Kronecker product**.
- Proves key lemmas enabling fast operations:
  - fast computation of  $Cx$  exploiting row-wise Kronecker structure,
  - formula for  $C^T v$ ,
  - fast computation of  $\text{diag}(C^T C)$ .
- Uses a **diagonal preconditioner** based on  $\text{diag}(\bar{F}^T \bar{F}) + \lambda(I \otimes D) + \rho I$ .
- Gives explicit complexity: per-iteration MVP  $O(qnr)$  and storage  $O(q(n+r))$ .

### Our solution: what it does

- Derives the matrix-free gather/scatter MVP for  $F^T Fx$  and the RKHS regularization term.
- Proposes a Kronecker-structured preconditioner by approximating  $\mathcal{P}_\Omega \approx \alpha I$  and using eigendecompositions of  $K$  and  $Z^T Z$ .

### Differences / what we were missing (detailed checklist)

1. **Definiteness treatment:** reference explicitly adds  $\rho > 0$  to guarantee SPD even when  $K$  is PSD/singular or the system is otherwise indefinite; we did not treat this carefully.
2. **Preconditioner choice and justification:**
  - reference: cheap *diagonal* preconditioner from explicit  $\text{diag}(C^T C)$  lemmas,
  - ours: heavier Kronecker eigen-based preconditioner, not the one justified in the reference.
3. **Missing the explicit lemma suite:** we used the idea but did not state/prove the clean algebraic formulas for  $Cx$ ,  $C^T v$ , and  $\text{diag}(C^T C)$  that the reference highlights.
4. **Avoiding big- $M$  costs:** we suggested forming  $Z^T Z$  with complexity depending on the full product size  $M$ ; the reference emphasizes staying in observed-index structures and avoiding large intermediate constructs.