Multi-Agent Strategy for Solving Research-Level

Mathematics
Documentation of the Workflow Used in the “First Proof” Benchmark

Dietmar Wolz

February 9, 2026

Abstract

This document details a heterogeneous multi-agent workflow designed to solve research-
level mathematical questions, specifically those presented in the “First Proof” benchmark
(arXiv:2602.05192v1). The strategy leverages the distinct strengths of three frontier models:
Claude Opus 4.6 for computational verification and code optimization, Gemini 3.0 Pro for
architectural planning and proof synthesis, and ChatGPT 5.2 (Extended Thinking) for
adversarial review. The methodology employs a conditional branching initialization followed
by an iterative agentic refinement loop. A fuller design rationale and implementation notes
are provided in the companion design document [2].

1 Introduction

The “First Proof” benchmark presents ten research-level questions arising from fields such
as algebraic combinatorics, spectral graph theory, and stochastic analysis [1]. Solving these
requires more than simple retrieval; it requires hypothesis testing, rigorous formalization, and
peer-review-level scrutiny.

This document outlines a standardized protocol for solving these problems by assigning
specific roles to Al agents based on their respective strengths and typical failure modes:

o Computational Agent: Opus 4.6 (Code generation, optimization, numerical heuristics).

o Synthesis Agent: Gemini 3.0 Pro (Thinking/Reasoning, IWTEX drafting, workflow orches-
tration).

o Review Agent: ChatGPT 5.2 (Extended Thinking, logical auditing).

o Formal Proof Checker (selective): Aristotle (Harmonic) for Lean-level verification and
counterexample feedback [3].

A more detailed design specification of this workflow (including prompt templates and
failure-mode mitigations) is maintained separately in [2].

2 Workflow Architecture

The solution pipeline is determined by the nature of the problem. If the problem implies a
need for numerical verification or counterexample search, the Computational Branch is triggered.
Otherwise, the process begins directly with the Theoretical Branch.



2.1 Phase 1: Initialization and Hypothesis Generation

Role: Claude Opus 4.6 — The Experimentalist

Trigger Condition: Problem requires numerical search, pattern recognition, or stochastic
stmulation.
Task 1: Experimental Coding

e Input: The raw problem statement from the PDF.

o Action: Create initial Python scripts to simulate the mathematical objects (e.g.,
tensor decompositions, Markov chains, or polynomial roots).

Task 2: Code Optimization
e Input: Initial Python script.
e Action: Refine the code for high-performance execution.
e Specific Techniques:

— Implementation of multiprocessing (specifically imap) for parallel execution.
— Implementation of numba (JIT compilation) to speed up inner mathematical
loops.

Task 3: Proof Sketch

o Action: Analyze the numerical output (convergence rates, counterexamples, or
invariant patterns) and generate a natural language proof sketch or conjecture based
on the empirical data.




2.2 Phase 2: Architectural Planning and Synthesis

Role: Gemini 3.0 Pro — The Architect & Author

Trigger Condition: Always active. Receives input from Phase 1 (if applicable) or starts
here.
Task 1: Context Ingestion

e Input:

— Full PDF context of the question.
— (Optional) Proof sketch, code, and code output from Opus 4.6.

Task 2: Meta-Prompting (the “Plan”)
e Action: Before solving, create a comprehensive prompt plan.

e Goal: Identify necessary lemmas, definitions, and the logical order of operations
required for a formal proof.

e Output: A structured “Table of Contents” for the proof.
Task 3: Execution (First Draft)
e Action: Execute the plan generated in Task 2.

e Output: A comprehensive, formal proof written in IXTEX.

2.3 Phase 3: The Agentic Review Loop

This phase constitutes the core rigorous element of the strategy. It is an iterative loop between
the Review Agent and the Synthesis Agent.

Algorithm 1 Agentic Review Loop

Input: Py (Initial Proof from Gemini)
140
Satis fied < False
while Satisfied is False do
ChatGPT 5.2: R; < Review(F;)
if R; contains no critical errors then
Satis fied < True
else
Gemini 3.0 Pro: P;y; < UpdateProof(P;, R;)
14—1+1
end if
: end while
: Output: Final Proof Ppipq

—_ =




Agent Roles in the Loop

Role: ChatGPT 5.2 (Extended Thinking) — The Reviewer

Task: Adversarial Review

e« Prompt: “Review the attached revised proof of question X. Scrutinize logical leaps,
citation accuracy, and algebraic correctness. Create a downloadable LaTeX file of
the review.”

e Mechanism: Uses “Extended Thinking” to simulate the time-intensive peer-review
process, checking step-by-step derivations.

e Output: A .tex file containing specific critiques, counter-claims, or requests for
clarification.

Role: Aristotle (Harmonic) — The Formal Proof Checker

| '

Trigger Condition: Used selectively when a key lemma or technical step could be formalized
in Lean 4, or when a natural-language argument passed the LLM review but still benefited

from machine-checking.
Task: Formal Verification / Hole Filling

o Input: A Lean proof skeleton (often created by translating a local BTEX fragment)
with explicit goals and required imports.

o Action: Use Aristotle to (i) fill in missing proof steps, (ii) surface typeclass/import
issues, or (iii) produce counterexamples when the statement is false.

o Output: A Lean-verified proof (or a concrete failure mode) that is fed back into
the review loop [3].

Role: Gemini 3.0 Pro — The Editor

Task: Refinement and Correction

e Input: The KTEX review generated by ChatGPT 5.2.
e Action:

— Check the validity of the claims made in the review.
— Re-derive sections flagged as erroneous.

— Improve the clarity of the arguments.

e Output: A revised version of the full proof in IATEX.

3 Summary of Prompts Used
The following specific prompts dictate the interaction flow:

Opus 4.6 (Computational)

1. “Create experimental Python code to [simulate/solve] the following problem...”

2. “Improve this code using multiprocessing (imap) and numba to maximize execution speed.”



3. “Based on the output, create a proof sketch or conjecture.”

Gemini 3.0 Pro (Synthesis)

1. Planning: “Create a prompt for the creation of a comprehensive proof in LaTeX. Break
down what needs to be done and in which order.”

2. Drafting: “Follow the prompt plan created above and generate the comprehensive proof
in LaTeX.”

3. Updating: “Check the claims in the attached review. Improve the proof if necessary and
output the updated LaTeX.”

ChatGPT 5.2 (Review)

1. “Review the attached revised proof of question X. Identify any logical fallacies or gaps.
Create a downloadable LaTeX file of the review.”

4 Improvements

1. Add an additional create-code / review-code loop for experimental scripts (separate from
the proof loop).

2. Constrain each review iteration to a fixed “change budget” (e.g., three high-impact im-
provements) to keep revisions incremental and auditable.

3. Require the reviewer to propose concrete replacement text (ready to paste into BTEX), and
require the editor to explicitly accept or reject each proposal.

Prompt Templates for the Review Loop

Template A: Targeted improvement review

Check the revised proof. Propose the three (more) most important improvements /
refinements of the proof. Make proposals what to write exactly. Create EFX for
this review.

Template B: Review-to-revision loop (accept/reject each point)

| r
\

Check the review and improve the proof for each point step for step, but only
when you agree.

The review contains the three most important things to improve and proposes
changes you can review/use.

If something needs to be derived instead of being just asserted, do so. Create
downloadable HKIEX.

5 Conclusion

This methodology cleanly separates concerns: Opus handles computational experiments and
performance engineering, Gemini handles proof architecture and IXTEX authoring, and ChatGPT
provides adversarial, peer-review—style scrutiny as a “second pair of eyes.” For selected proofs,
we additionally used the Aristotle system as a formal Lean 4 proof checker, providing a machine-
verifiable backstop on key lemmas and technical steps [3]. This reduces ungrounded assertions
and improves both correctness and readability of the final mathematical output.



References

[1] Abouzaid, M., et al. (2026). First Proof. arXiv:2602.05192v1 [cs.Al].

[2] Wolz, D. (2026). Agentic Strategy Design for Math Proofs. Available at https://althofer.
de/agentic_strategy_design_for_math_proofs.pdf. Accessed February 12, 2026.

[3] Achim, T., et al. (The Harmonic Team) (2025). Aristotle: IMO-level Automated Theorem
Proving. arXiv:2510.01346. Project page: https://harmonic.fun. Accessed February 12,
2026.


https://althofer.de/agentic_strategy_design_for_math_proofs.pdf
https://althofer.de/agentic_strategy_design_for_math_proofs.pdf
https://harmonic.fun

	Introduction
	Workflow Architecture
	Phase 1: Initialization and Hypothesis Generation
	Phase 2: Architectural Planning and Synthesis
	Phase 3: The Agentic Review Loop

	Summary of Prompts Used
	Improvements
	Conclusion

