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Deutsche Zusammenfassung

Deutsche Zusammenfassung

”
In einer beliebigen [Schach-]Position gibt es entweder nur einen, besten

Zwangszug, oder aber drei etwa gleichwertige Züge.“ [Cor 1913]

Diese These bildet den Ausgangspunkt der vorliegenden Dissertation. Aufgestellt
wurde sie von Oskar Cordel (1843-1913), einem Schachmeister, der viele bedeutende
Beiträge zur Eröffnungstheorie geleistet hat. Leider starb Cordel, bevor er in einem
Buch Erläuterungen zu seiner Behauptung niederschreiben und veröffentlichen konnte.
Sein Verleger H. Ranneforth beendete Cordels letztes Buch

”
Theorie und Praxis des

Schachspiels“ [Cor 1913] und formulierte im letzten Abschnitt das oben zitierte, soge-
nannte

”
Drei-Züge-Gesetz“. Wie Cordel es genau gemeint hat und ob er tatsächlich

glaubte, damit eine allgemeingültige Regel gefunden zu haben, darüber können wir
heute nur spekulieren.

Soweit wir wissen, gab es nach Cordels Tod keine weiteren Untersuchungen zu seiner
Behauptung. Unser Ziel war es, in dieser Arbeit die mathematische Grundlage für eine
Analyse der Gültigkeit des Gesetzes zu legen und einen ersten Eindruck zu gewinnen,
ob es sich auch auf diskrete Optimierungsprobleme übertragen lässt.

Tatsächlich kann Cordels Überlegung in dieser Allgemeinheit nicht richtig sein. So
kann man Schachstellungen finden, in denen es genau zwei Gewinnzüge gibt, die
genauso schnell zum Ziel führen und somit gleich gut sind. Deshalb haben wir un-
tersucht, wie häufig beziehungsweise unter welchen Bedingungen es gilt. Dafür wird
zunächst in Kapitel 1 mit der verallgemeinerten Cordel Eigenschaft (GeCoP)
eine mathematische Verallgemeinerung des Drei-Züge-Gesetzes eingeführt. Weiterhin
gibt die Cordel-Frequenz CF(k) an, mit welcher Wahrscheinlichkeit eine zufällige
Schachstellung mit k Figuren die verallgemeinerte Cordel Eigenschaft erfüllt. Während
eine Cordel-Frequenz von 100% bedeutet, dass unsere Interpretation des Drei-Züge-
Gesetzes (GeCoP) in jeder Schachstellung gilt, bedeutet eine Cordel-Frequenz von 0%,
dass sie niemals gültig ist.

Eine Schwierigkeit bei der Überprüfung von (GeCoP) ist, dass man für eine gegebene
Stellung die drei besten Züge ermitteln muss. Weiterhin sind für die exakte Berechnung
der Cordel-Frequenz CF(k) alle legalen Schachstellungen mit k Figuren zu betrachten.
Dies ist nur für Schachendspiele möglich, die komplett durchgerechnet werden können.
Beispielsweise enthalten die Nalimov-Datenbanken komplette Analysen aller legalen
Züge für Schachstellungen mit 3, 4 oder 5 Figuren.

E. Bleicher [Ble 2005] hat uns umfassende Datensätze zur Verfügung gestellt, mit de-
nen wir die Cordel-Frequenzen CF(3),CF(4) und CF(5) exakt ermitteln konnten. Für
Schachstellungen mit 6 Spielfiguren haben wir weiterhin mittels Monte-Carlo-Analyse
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Deutsche Zusammenfassung

gute Schätzungen für die Cordel-Frequenzen bestimmt. Es zeigt sich, dass die Cordel-
Frequenz für Schachendspiele zwischen 77% und 84% und damit deutlich über der 50%-
Marke liegt. Oskar Cordels Drei-Züge-Gesetz ist damit eine gute Faustregel in Schach-
endspielen. Für Schach- und Zahleninteressierte bieten die ausführlichen Tabellen im
Anhang (Appendix D, E und F) viel Spielraum für weiterführende Untersuchungen
(nicht nur zum Drei-Züge-Gesetz).

Die Ergebnisse für Schach, die besagen, dass Cordels Drei-Züge-Gesetz zwar nicht in
jeder Schachstellung, aber in circa 80% aller Endspiele gilt, haben uns darin bestärkt,
die Definition der Cordel-Frequenz auch auf Optimierungsprobleme (vorrangig kom-
binatorische Optimierungsprobleme) zu übertragen. Dies bildet das Hauptaugenmerk
dieser Dissertation.

In Analogie zu den drei besten Zügen im Schach kann man bei Optimierungsproble-
men die drei besten Lösungen (sofern vorhanden) betrachten. In der Praxis ist aber
häufig die zweitbeste Lösung eher uninteressant, da sie sich meist kaum von der opti-
malen Lösung unterscheidet. Als einfaches Beispiel lassen sich Routenplanungsprob-
leme anführen. Alle gängigen Routenplaner schlagen neben der optimalen Lösung
mindestens eine gute Alternativroute vor, die bei weitem nicht die zweitschnellste
Strecke ist. Diese würde sich nämlich vermutlich nur in einem kurzen Umweg über
einen Parkplatz von der optimalen Lösung unterscheiden. Gute Alternativlösungen
spielen in der Praxis daher eine sehr wichtige Rolle. Mit diesem Wissen haben wir uns
dazu entschieden, die Cordel-Frequenz sehr allgemein für beliebige Auswahlregeln zu
definieren. Untersucht haben wir:

� die naheliegende Beste-Lösungen-Regel, welche die drei besten zulässigen Lö-
sungen auswählt

� und die Penalty-Regel, die eine optimale Lösung und zwei gute Alternativen,
die sich hinreichend von der optimalen Lösung unterscheiden, auswählt.

Die Penalty-Methode, welche die Basis für die Auswahl von Lösungen mittels der
Penalty-Regel bildet, wurde bereits in vielen anderen Arbeiten ausführlich untersucht
[Ber 2000, ABS 2002, Sch 2003, Sam 2005, Dör 2009]. Bisher hat man sich dabei im-
mer auf Optimierungsprobleme vom Summen-Typ beschränkt. In Kapitel 2 verall-
gemeinern wir die Penalty-Methode so, dass sie beispielsweise nun auch gut für das
beschränkte und unbeschränkte Rucksackproblem sowie das Transportproblem mit
nicht-ganzzahligen Kapazitäten anwendbar ist. Es wird gezeigt, dass trotz dieser Ver-
allgemeinerung alle wichtigen Eigenschaften der Penalty-Methode (z.B. die Monotonie)
erhalten bleiben.

In der ursprünglichen Variante der Penalty-Methode bestimmt man zunächst eine opti-
male Lösung B(0) des Minimierungsproblems. Anschließend werden alle Elemente (z.B.
Straßenteile im Falle des Routenplanungsproblems), die von der optimalen Lösung ver-
wendet werden, mit einem Faktor (1 + ε) multipliziert und somit bestraft. Dabei ist
ε ≥ 0 der sogenannte Penalty-Parameter. Für dieses neue Optimierungsproblem mit
bestraften Elementen wird nun wieder eine optimale Lösung bestimmt. Diese ist die
ε-Penalty-Alternative B(ε).
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Eine wichtige Eigenschaft der Penalty Methode, dass der Penalty-Parameter ε maßgeb-
lich beeinflusst, wie die zugehörige Penalty-Alternative aussieht, kann sich in der Praxis
als Problem erweisen. Wählt man ε zu klein, so erhält man statt einer alternativen
Lösung wieder nur die bereits bekannte optimale Lösung B(0). Wählt man ε hingegen
zu groß, so kann es passieren, dass die neu berechnete Alternative zu schlecht ist. Um
also brauchbare Alternativen zu erhalten, muss man sehr vorsichtig bei der Wahl eines
geeigneten ε sein.
Diese Arbeit schlägt ein neues Konzept vor, um dieses Problem zu umgehen. Ohne die
konkrete Vorgabe eines Penalty-Parameters bestimmen wir die sogenannten k besten
Penalty-Alternativen. Diese sind alle verschieden und zeichnen sich durch sehr gute
Funktionswerte aus. Mit einer Modifikation des Algorithmus von Schwarz, die in
Abschnitt 2.4 vorgestellt wird, lassen sich die k besten Penalty-Alternativen finden.
Außerdem zeigen wir zahlreiche Möglichkeiten, die Berechnung zu beschleunigen, auf
und diskutieren sie. Dieser Algorithmus ermöglicht uns auch die Ermittlung der drei
Lösungen, die durch die Penalty-Regel für die Bestimmung der Cordel-Frequenz aus-
gewählt werden.

In den Kapiteln 3 und 4 werden experimentell ermittelte Cordel-Frequenzen für zahl-
reiche diskrete Optimierungsprobleme unter Verwendung der Penalty-Regel und der
Beste-Lösungen-Regel präsentiert. Der Schwerpunkt liegt dabei deutlich auf der Unter-
suchung der Penalty-Regel. Hier wurden viele unterschiedliche Phänomene beobachtet,
die in Abschnitt 3.7 zusammengefasst werden. Insgesamt hat sich gezeigt, dass ty-
pische Cordel-Frequenzen bei Verwendung der Penalty-Regel zwischen 15% und 30%
liegen. Wenn deutlich andere Cordel-Frequenzen aufgetreten sind, ließ sich das immer
mit einer speziellen Eigenschaft des Optimierungsproblems begründen. Im Gegensatz
dazu scheinen typische Cordel-Frequenzen bei Verwendung der Beste-Lösungen-Regel
bei circa 50% zu liegen. Diese Auswahlregeln bringen also erheblich unterschiedliche
Cordel-Frequenzen mit sich.

Im theoretischen Kapitel 5 werden schließlich Erklärungsansätze für die experimentell
ermittelten Cordel-Frequenzen aus den vorherigen Kapiteln geliefert. Unter einigen
theoretischen Annahmen haben wir Cordel-Frequenzen unter Verwendung der Beste-
Lösungen-Regel exakt berechnen können. Weiterhin untersuchten wir an einem theo-
retischen Modell, welche Frequenzen für die Penalty-Regel unter gewissen Annahmen
zu erwarten sind. Alle theoretischen Untersuchungen bestätigten die experimentellen
Ergebnisse und unsere in den vorigen Kapiteln aufgestellten Vermutungen.

Den Abschluss dieser Arbeit bildet eine umfangreiche Sammlung von offenen Fragen
und Anregungen für weitere Untersuchungen zur verallgemeinerten Cordel Eigenschaft.

vii





Acknowledgements

Acknowledgements

Writing this thesis has been one of the most significant academic challenges I have ever
had to face. There have been many people, whose support, patience, and advice helped
me finishing this work. It is to them that I owe my deepest gratitude for making this
work enjoyable.
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Chapter 1

The Cordel Property

1.1 Historical Background

Oskar Cordel (1843-1913) was a German chess master who wrote a couple of books
on chess theory. His last book “Theorie und Praxis des Schachspiels” [Cor 1913] was
published posthumously. Because Cordel died before having finished the work on this
last book, his editor H. Ranneforth finalized it. In doing so he added a paragraph
on what Cordel called the “Three Moves Law” though Ranneforth himself was not
convinced of its validity. We give the following English translation of the original
German citation, which can be found in Appendix A on page 129. The translation was
done by I. Althöfer and L. Schreiber.

“At this point it should be noted that Cordel established the so-called
‘Three Moves Law’1 based on long lasting analysis (several years). In an ar-
bitrary chess position there is either only one best move (a ‘forced move’) or
three moves of approximately equal strength. This law, so Cordel claimed,
provides excellent assistance in testing the correctness of moves in chess.
For him it established clarity, whenever chess books indicated that investi-
gations were incomplete, such as for the Evans gambit, the Guioco Piano,
the Ponziani Opening, etc. Where there were two apparently nearly equally
good follow-ups, then his conviction was either one of them was wrong or
a third one should exist. He stuck to his guns till he reached clarification.
The preparatory work for a book on this ‘Three Moves Law’ was already
far advanced. Here death upset his plans, too.”

In no other part of discrete optimization a similarly old source on the distribution of
extreme functional values of an optimization problem exists. Even more, there have
been no investigations on the validity of this Three Moves Law set in motion until the
end of 2008. But one has to keep in mind that the understanding of chess may have
changed due to the upcoming of very strong chess computers since the 1980s. It may
be that what Cordel called a law was a valid heuristic in former times but is no longer
valid.
Because the paragraph written by Ranneforth is the only source on the Three Moves
Law, we cannot be completely certain that Cordel meant the law as Ranneforth de-
scribed is. But we know that Cordel worked on a book regarding the Three Moves Law
which suggests that it was of high importance to him.

1Original German name: “Dreizügegesetz”
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1. The Cordel Property

1.2 Mathematical Formulation of the

Three Moves Law

If we want to give a mathematical formulation of the Three Moves Law, it is essential
to define what “equally good moves” are. Without loss of generality, from now on we
assume that White is to move and introduce the following notation.

Definition 1.2.1 (Classification of Moves and Positions According to their
Game Theoretical Values)
We call a move a W-move (win) if it leads to a win for White assuming perfect play by
both sides. Analogously we introduce the abbreviations D-move (draw) and L-move
(loss). The outcome W, D, or L of the game, when move m is made, (again assuming
perfect play by both sides) is called the game theoretical value v(m) of m.

Furthermore we call a chess position W-position (or D- or L-position) if White’s
best move is a W-move (or D- or L-move). Moreover, we introduce a more specific
notation. Therefore let m1, . . . ,mk be the k best moves in a given chess position ordered
by their game theoretical values s1 = v (m1) , . . . , sk = v (mk) ∈ {W,D,L}. Then
we call the position an S-position, where S = (s1, . . . , sk) ∈ {W,D,L}k is a string
containing the ordered game theoretical values of the k best moves.

Note, that the term “move” includes only legal moves according to the chess rules.

Example 1.2.2
We consider the following chess position with White to move.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 OpZ0Z0Z0
2 0Z0j0Z0Z
1 SKZ0Z0Z0

a b c d e f g h
�

FEN: 8/8/8/8/8/Pp6/3k4/RK6 w - - 0 1

Obviously the white player has only three legal moves. Kb1-b2 and a3-a4 both lead to
a win (they are W-moves) and Ra1-a2 leads to a draw (D-move). Hence, the chess
position above is a WWD-position (with k = 3) or a WW-position if we consider only
the two best moves. When regarding only the best move the position is just called a
W-position.

2



1.2. Mathematical Formulation of the Three Moves Law

We make the following observations.

1. W-moves are strictly better than D-moves, and D-moves are strictly better than
L-moves.

2. A W-move is better than another W-move if it leads to a quicker checkmate (with
fewer moves) assuming perfect play.

3. An L-move is better than another L-move if it leads to a terminal loss position
more slowly assuming perfect play. This is because a longer game gives the
opponent more opportunity to err, and the player to move a better chance of
winning or at least reaching a draw.

4. D-moves are all equally good since there are no reasonable criteria for comparison.
Prominent endgame tablebases for chess (for example the Nalimov tablebases)
are distance to mate (DTM) tablebases which contain the number of moves to a
final winning position assuming perfect play. As such the tablebases provide no
values for D-moves.

This in mind, we get the following table for k = 2:

Move m1 Move m2 Comparison of m1 and m2

W-Move W-Move m1 is better than m2 if it leads to an earlier end
W-Move D-Move m1 is always better than m2

W-Move L-Move m1 is always better than m2

D-Move D-Move m1 and m2 are always equally good
D-Move L-Move m1 is always better than m2

L-Move L-Move m1 is better than m2 if it leads to a later end

Based on this classification we define the value f(m) of a W-move (or L-move)
m as the number of White’s moves until the end of the game assuming perfect play
on both sides. Remember that we assumed without loss of generality that White is to
move. This allows us a more precise ranking of moves which does not only refer to the
game theoretical value win, draw, or loss. Furthermore it enables us to compare two
W-moves (or L-moves).

Definition 1.2.3 (Comparing two W-moves)
We say that a W-move w1 is better than another W-move w2 if

f (w1) < f (w2)

holds. Furthermore we call two W-moves w1 and w2 equally good if

f (w1) = f (w2)

holds.
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1. The Cordel Property

By analogy we say that an L-move l1 is better than another L-move l2 if

f (l1) > f (l2)

holds and we call two L-moves l1 and l2 equally good if

f (l1) = f (l2)

holds.

Example 1.2.4
We consider the following chess position and look at the marked moves. Here, moves
marked in green are W-moves, moves in blue are D-moves and moves in red are L-
moves. This color code is preserved in each of the following examples, too.

8 0Z0Z0Z0Z
7 Z0Z0ZQJ0
6 0ZkZPZ0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0ZqZ0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/5QK1/2k1P3/8/8/8/4q3/8 w - - 0 1

These six moves have the following values.

Move m Result Assuming Perfect Play Type Value f(m)

e6-e7 Win in 12 moves W-move 12
Kg7-f8 Win in 61 moves W-move 61
Kg7-h8 Draw D-move –
Qf7-f4 Draw D-move –
Qf7-b7 Loss in 9 moves L-move 9
Qf7-h5 Loss in 8 moves L-move 8

Since the first W-move e6-e7 has a smaller value than the second W-move Kg7-f8

f (e6-e7) = 12 < 61 = f (Kg7-f8)

it is better.
Likewise the first L-move Qf7-b7 is better than the second L-move Qf7-h5.

f(Qf7-b7) = 9 > 8 = f(Qf7-h5)
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1.2. Mathematical Formulation of the Three Moves Law

For chess endgames with at most six pieces (incl. kings) there exist the Nalimov
tablebases named in honour of their creator E. Nalimov. E. Bleicher provides an applet
to query all of the currently published Nalimov tablebases on his website [Ble 2005].
There one can enter an arbitrary chess position with at most six pieces and the database
tells immediately which of the legal moves lead to a victory, draw or loss and how
many moves on each side have to be played in perfect play until the game ends. Thus
the applet supplies the game-theoretical values (win, draw or loss) and the values of
each move. In this way the values in the previous Example 1.2.4 and the following
Example 1.2.5 were obtained.

Example 1.2.5
We consider the following chess position, which is the same as in Example 1.2.4.

8 0Z0Z0Z0Z
7 Z0Z0ZQJ0
6 0ZkZPZ0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0ZqZ0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/5QK1/2k1P3/8/8/8/4q3/8 w - - 0 1

By querying Bleichers applet [Ble 2005] we obtain the following tables which consist of
all moves and their values.

W-Moves:

Move Value
m1 = e6-e7 Win in 12
m2 = Qf7-d7 Win in 28
m3 = Qf7-e8 Win in 30

Kg7-g8 Win in 31
Qf7-f5 Win in 40
Qf7-f6 Win in 59
Qf7-g6 Win in 59
Kg7-f7 Win in 61
Qf7-e7 Win in 64
Kg7-h6 Win in 64
Kg7-g6 Win in 65
Kg7-f6 Win in 66

D-Moves:

Move Value
Qf7-a7 Draw
Qf7-f4 Draw
Qf7-f8 Draw
Qf7-g8 Draw
Kg7-h7 Draw
Kg7-h8 Draw

L-Moves:

Move Value
Qf7-b7 Loss in 9
Qf7-c7 Loss in 8
Qf7-f3 Loss in 8
Qf7-f2 Loss in 8
Qf7-f1 Loss in 8
Qf7-h5 Loss in 8

5



1. The Cordel Property

Thus we have e6-e7 as best move m1, Qf7-d7 as second-best move m2, and Qf7-e8 as
third-best move m3 with values

f (m1) = 12 < f (m2) = 28 < f (m3) = 30 .

The best move m1 in an arbitrary chess position is not always uniquely defined. But
since we are only interested in the values of the best moves this ambiguity is not a
problem. Thus, whenever we speak of the three best moves, we have in mind that they
must not be uniquely determined.

Remark 1.2.6
The Nalimov endgame tablebases are distance to mate (DTM) tablebases which do not
contain the fifty-move rule of the World Chess Federation [FIDE]. According to this
FIDE rule (for human play) a player can claim a draw if no pawn has been moved and
no capture has been made in the last fifty moves. This rule prevents the game from
continuing indefinitely without real progress.

Since the tablebases do not take this rule into account, some W-moves with values
greater than 50 could lead to a draw in practice through an opponent’s claim. Fur-
thermore, there could exist a longer sequence of moves which leads to a final winning
position without the possibility of a draw claim.

Keeping our definition of equally good moves in mind, we want to decide whether
Cordel’s Three Moves Law holds in a given WWW- or LLL-position or not. Since
Cordel never defined what he meant by “equally good best moves”, this will be in fact
only our interpretation of Cordel’s law. But we still want to use his term Three Moves
Law. We make the following observation regarding the connection between differences
d1, d2 of the functional values and the Three Moves Law.

Lemma 1.2.7
Consider a WWW- or LLL-position where m1,m2, and m3 are the three best moves
with f (m1) ≤ f (m2) ≤ f (m3). Furthermore let

d1 := |f (m1)− f (m2)| and d2 := |f (m2)− f (m3)|

be the differences of their functional values.

Then

d1 ≥ d2 (1.1)

implies that we have either exactly one best move m1 or at least three equally good best
moves m1,m2,m3 with

f (m1) = f (m2) = f (m3) .

Hence, the Three Moves Law holds.
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1.2. Mathematical Formulation of the Three Moves Law

Proof. Consider a WWW-position where the absolute differences of the values of the
three best moves fulfill (1.1).

In case d1 > 0 we have exactly one best move and the Three Moves Law holds. Thus,
assume the best and second-best move to be equally good which implies d1 = 0. Since
d1 and d2 are defined as absolute values, it follows that d1, d2 ≥ 0 holds. Hence,

0 = d1

(1.1)

≥ d2 ≥ 0 ⇒ d2 = 0

and the values of m1,m2, and m3 are all equal. Consequently the three moves are
equally good and the Three Moves Law holds in this case, too.

Analogously, (1.1) implies that the Three Moves Law holds in a given LLL-position.�

Based on this observation we introduce the generalized Cordel property, which is
a property of WWW- and LLL-positions motivated by Cordel’s Three Moves Law.

Definition 1.2.8 (Generalized Cordel Property for the Three Best Moves)
Let m1,m2, and m3 be the three best moves in a given WWW- or LLL-position.

We say that m1,m2, and m3 fulfill the generalized Cordel property (GeCoP)2 if
and only if

d1 := |f (m1)− f (m2)| ≥ |f (m2)− f (m3)| =: d2 . (GeCoP)

holds.

With the help of Definition 1.2.8 we want to examine how often Cordel’s Three Moves
Law is valid for chess. But obviously by our definition of equally good moves, the Three
Moves Law cannot always be true. One can easily find chess positions with exactly
two best moves, as in the following example.

Example 1.2.9
In the constructed chess position shown on the next page the white player has exactly
two ways to checkmate immediately: m1 = Qe2×e8 and m2 = Qe2-h5. Thus f (m1) =
f (m2) = 1 holds. Furthermore, the next best move m3 leads to a win in two moves.
Hence, f (m3) = 2 and

d1 = |f (m1)− f (m2)| = 0 < 1 = |f (m2)− f (m3)| = d2

hold.

2We use the abbreviation (GeCoP) instead of the shorter form (GCP) in order to give an pro-
nounceable name.
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1. The Cordel Property

8 0Z0ZnZ0j
7 ZRZ0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0J0ZQZRZ
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 4n2k/1R6/8/8/8/8/1K2Q1R1/8 w - - 0 1

Thus far, we have considered the generalized Cordel property only for the three best
moves. Now, we want to go one step further and define the Cordel property for three
arbitrarily chosen W-moves (or L-moves) m1,m2,m3.

Definition 1.2.10 (Generalized Cordel Property for Chess)
Let m1,m2, and m3 be three arbitrary W-moves or three L-moves in a given chess po-
sition. Furthermore let m1 be the best and m3 be the worst of the three moves. That
means f (m1) ≤ f (m2) ≤ f (m3) should hold.

We say that the ordered triple (m1,m2,m3) fulfills the generalized Cordel property
(GeCoP) if and only if

d1 := |f (m1)− f (m2)| ≥ |f (m2)− f (m3)| =: d2 (GeCoP)

holds.

Definition 1.2.10 is very general and also slightly unspecific, because it does not specify
how to choose the three moves m1,m2, and m3. As in the underlying Three Moves Law,
m1,m2, and m3 could be the three best moves. But one can imagine other selection
rules also.

Definition 1.2.11 (Selection Rule)
A rule S is called selection rule if it chooses three moves m1,m2, and m3, where m1

is the best and m3 is the worst of the three moves.

We suggest the following three selection rules for chess, where the first suggested rule
is the previously considered best moves rule.

Definition 1.2.12 (Selection Rules for Chess)
For chess we define the following three selection rules.

(i) m1,m2, and m3 are the three best moves in a given chess position. This is the
best moves rule.

8



1.2. Mathematical Formulation of the Three Moves Law

(ii) Let p1, p2, . . . , pk (k ≥ 3) be the remaining pieces of the player who is in turn.
Furthermore let mpi denote the best move he can make with piece pi. The best
move per piece rule selects the three best of these k candidates mp1 , . . . ,mpk .

(iii) If the player to move has at least three different piece types left, then we can
look for the best move for each piece type and pick m1,m2,m3 as the three
best of these moves. Since m1,m2, and m3 are moves of different piece types by
definition, we call this rule best move per piece type rule.

As already mentioned before, m1,m2,m3 may not be uniquely determined. This is not
a problem, since we are only interested in their functional values. We illustrate the
three suggested rules in the following example.

Example 1.2.13
Consider the following position.

8 0Z0M0Z0j
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0ZNZ
1 J0L0Z0Z0

a b c d e f g h
�

FEN: 3N3k/8/8/8/8/8/6N1/K1Q5 w - - 0 1

Move Value
q1 := Qc1-c7 Win in 3
q2 := Qc1-g5 Win in 3
q3 := Qc1-h6 Win in 3

n1,1 := Nd8-e6 Win in 3
q4 := Qc1-c3 Win in 4
q5 := Qc1-b2 Win in 4

n2,1 := Ng2-f4 Win in 4
n2,2 := Ng2-h4 Win in 4
k1 := Ka1-b1 Win in 5
k2 := Ka1-a2 Win in 5
k3 := Ka1-b2 Win in 5

...
...

Thus,

(i) The best moves rule selects three of the four equally best moves q1, q2, q3 and n1,1.

(ii) The best move per piece rule selects

� one of the three equally best queen’s move q1, q2, q3,

� the best move n1,1 of a knight (in this case the d8 knight), and

� one of the two equally best moves n2,1, n2,2 of the other knight (the g2 knight).

(iii) Finally the best move per piece type rule selects

� one of the three equally best queen’s move q1, q2, q3,

� the best knight move n1,1, and

� one of the three equally best king’s moves k1, k2, k3.
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1. The Cordel Property

Though in this example all three selection rules provide different tuples of moves, there
of course exist also chess positions where the rules select the same moves.

Note that not in every chess position the three suggested selection rules choose three
W-moves or three L-moves as required in the definition of the generalized Cordel prop-
erty. Thus, only if the selection rule chooses three W- or three L-moves, the validity of
the generalized Cordel property can be checked.

Since the Three Moves Law does not hold in every chess position, as shown in Ex-
ample 1.2.9, Althöfer, Bleicher, and Schreiber have tried to figure out, how often the
Three Moves Law holds. Therefore we introduce the Cordel frequency to indicate how
often the Three Moves Law, or to be more precise, the generalized Cordel property
(GeCoP) holds. This and the results for chess are presented in the next Section 1.3.
Afterwards, in Section 1.4 we generalize the concept and move on from chess to arbi-
trary optimization problems. This is what the remaining Chapters 2 - 5 deal with.

1.3 The Validity of the Three Moves Law

in Chess Endgames

Althöfer, Bleicher, and Schreiber checked the Nalimov tablebases (cf. [Ble 2005]) for
different chess endgames with 3 to 6 pieces. A report with the results of this huge
stastical evaluation is in preparation [ABS 2012]. In [Alt 2009] Althöfer stated that for
chess endgames the following two propositions hold:

1. It is relatively rare that a chess position has exactly two best moves.

2. The average distance between the best and second-best moves in a chess position
is larger than the average distance between the second-best and third-best moves.

Based on these observations, Althöfer posed the question: “In which parts of a chess
game (opening, middlegame or endgame) are the properties 1 and 2 most prominent?”

Motivated by this claim, which suggests that the Three Moves Law holds very often
in chess endgames at least, we counted how often the Three Moves Law is valid in
endgames with 3 to 6 pieces (including kings). To give more structure, we sorted the
endgames by their piece distributions.

Definition 1.3.1 (Piece Distribution)
Given a chess position S the piece distribution consists of the type of chess pieces
of the player who is to move and the type of chess pieces of the opponent. In doing so
the chess pieces of each player are sorted according to the order

k (king), q (queen), r (rook), b (bishop), n (knight), p (pawn) .

The position of the chess pieces on the board does not matter.

10



1.3. The Validity of the Three Moves Law in Chess Endgames

Example 1.3.2
We consider the following example where White is to move.

8 0s0a0Z0Z
7 Z0ZkZ0Z0
6 0ZqZnZbZ
5 Z0Z0opo0
4 0Z0Z0Z0Z
3 ZRZ0Z0Z0
2 0JRZNZ0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 1r1b4/3k4/2q1n1b1/4ppp1/8/1R6/1KR1N3/8 w - - 0 1

White, on move, has the following remaining chess pieces sorted according to their
values: 1 king, 2 rooks, 1 knight.
The black player who is not to move has the following remaining chess pieces sorted
according to their values: 1 king, 1 queen, 1 rook, 2 bishops, 1 knight, 3 pawns.
Thus, this is a krrn versus kqrbbnppp piece distribution. We often omit the “versus”
and write krrnkqrbbnppp.

For each of these piece distributions Bleicher provided detailed information by querying
the Nalimov tablebases for all chess endgames with at most 6 pieces (including kings).
He gave us a textfile for each piece distribution with the following information.

1. The number of WWW, WWD, WWL, WDD, WDL, WLL, DDD, DDL, DLL,
LLL instances (for instances with at least three feasible moves).

2. The number of WW, WD, WL, DD, DL, and LL instances (for instances with
exactly two legal moves).

3. The number of W, D, and L instances (for instances with exactly one legal move).

4. The number of checkmate instances (player who is to move has no feasible move
and is checkmated) and stalemate instances (player who is to move has no feasible
move but is not checkmated).

5. The number of WWW (or LLL) instances, which fulfill

a) d1 > d2 ,

b) d1 = d2 , and

c) d1 < d2.
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1. The Cordel Property

Appendix B on page 131 shows the textfile for the piece distribution “king plus knight
versus king plus pawn” as an illustration.

Given these data files we counted how often WWW- and LLL-positions with (GeCoP)
occurred. The remaining chess positions were divided into Cordel and non-Cordel
positions without regard to the concrete values (move numbers until the end of game).
The following table shows the whole classification.

number of Cordel positions non-Cordel positions
of feasible moves

1 W, D, L -
2 WD, WL, DL WW, DD, LL
at least 3 WWW with (GeCoP), WWW without (GeCoP),

WDD, WDL, WLL, DDD, DLL, WWD, WWL, DDL,
LLL with (GeCoP) LLL without (GeCoP)

Appendix C starting on page 133 contains examples for each class of chess positions
with at least three feasible moves.

Definition 1.3.3 (Cordel Frequency for Chess)
The Cordel frequency CFd for a given piece distribution d denotes the prob-
ability that a random nonterminal chess position (which is not already checkmate or
stalemate) with piece distribution d belongs to one of the following categories:

(i) WDD, WDL, WLL, DDD, DLL

(ii) WWW-position with d1 ≥ d2 (GeCoP)

(iii) LLL-position with d1 ≥ d2 (GeCoP)

(iv) WD, WL, DL (with exactly two feasible moves at all)

(v) W, D, L (with only one feasible move)

Furthermore we define the Cordel frequency CF(k) as the mean of all Cordel fre-
quencies CFd for piece distributions d with exactly k chess pieces (including kings).

Remark 1.3.4
By defining the Cordel frequency as the mean of the Cordel frequencies for all piece
distributions, we assume each piece distribution to be equally probable. This is partic-
ularly meaningful since the data sets Bleicher provided, consist of different numbers of
instances for each piece distribution. The reason for this is the different board symmetry
and number of legal chess positions depending on the piece distribution.

For chess endgames with 3 chess pieces and the best moves rule the following relative
frequencies occurred.
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1.3. The Validity of the Three Moves Law in Chess Endgames

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkq − − − − − 6% 51% − − 3% − 1% 5% 66%
kkr − − − − − 8% 54% − − 2% − 0% 2% 66%
kpk 45% 8% − − 23% − − 0% − − 0% 0% − 76%
kqk 78% − − − − − − − − − − − − 78%
krk 80% − − − − − − − − − − − − 80%
kkp − − − − 27% 6% 48% − − 0% − 0% 0% 82%
kkb − − − − 95% − − − − − − 1% − 96%
kkn − − − − 97% − − − − − − 1% − 98%
kbk − − − − 100% − − − − − − − − 100%
knk − − − − 100% − − − − − − − − 100%

Mean 20% 1% − − 44% 2% 15% 0% − 0% 0% 0% 1% 84%

Table 1.3.1: Frequencies of Cordel positions in chess endgames with 3 pieces (including
kings). For each piece distribution the value in the right column is the corre-
sponding Cordel frequency.

The “−” (for example for kkq, WWD) means that there exist no kkq endgame posi-
tions that are WWD. Otherwise, 0% means that there were instances which had this
classification, but below 0.5%. Furthermore, note that all values are rounded up or
down with the consequence that the sums in the right column are not always equivalent
to the sums of the rounded values. By definition, this last column contains the Cordel
frequencies of each piece distribution. The entry on the bottom right which is the mean
of the Cordel frequencies for each piece distribution and equals the Cordel frequency
for endgames with 3 pieces and the best moves rule.

For the sake of completeness, the following table shows all relative frequencies for
non-Cordel instances (for endgames with 3 pieces and the best moves rule).

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkq − − − − 24% − − 10% 34%
kkr − − − − 29% − − 5% 34%
kpk 18% 5% − − − 0% 0% − 24%
kqk 22% − − − − − − − 22%
krk 20% − − − − − − − 20%
kkp − − − 8% 9% − 0% 1% 18%
kkb − − − − − − 4% − 4%
kkn − − − − − − 2% − 2%
kbk − − − − − − − − −
knk − − − − − − − − −

Mean 6% 1% − 1% 6% 0% 1% 2% 16%

Table 1.3.2: Frequencies of non-Cordel positions in chess endgames with 3 pieces (includ-
ing kings).
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Figure 1.3.3: Best moves rule: Relative frequencies of different types of chess positions in
endgames with 3, 4, or 5 pieces (including kings) with at least three feasible
moves. We use green bars for Cordel and red bars for non-Cordel positions.
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Figure 1.3.4: Best moves rule: Relative frequencies of different types of chess positions
in endgames with 3, 4, or 5 pieces (including kings) with only two (left) or
one (right) feasible moves. We use green bars for Cordel and red bars for
non-Cordel positions.
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Figure 1.3.3 (a)-(c) and Figure 1.3.4 (a)-(c) show the frequencies of each class of chess
positions for endgames with three, four, or five pieces for the best moves rule. For
k = 3 pieces these are the column means from the two tables above. The green marked
bars indicate the instances where the Three Moves Law holds. Thus, adding up these
relative frequencies provides the Cordel frequencies for the best moves rule.

The figures show that the results for endgames with 3, 4, or 5 pieces do not differ in
principle. As the relative frequency of DDD instances decreases enormously, depending
on the number of pieces, and the frequencies of DL and D instances decrease slightly,
the frequencies of the remaining Cordel positions increase. On the other hand, all types
of non-Cordel positons occur slightly more often in endgames with more pieces. Hence,
the Cordel frequency slightly decreases (as the number of pieces on the board grows
from 3 to 5). This is confirmed by the following table.

number of pieces k = 3 k = 4 k = 5
CF(k) ≈ 84% ≈ 80% ≈ 77%

Table 1.3.5: Cordel frequencies for chess endgames with the best moves rule.

Note, that the values are established by examining the whole databases and not through
consideration of random chess positions.

In order to give an even better impression of the validity of the Three Moves Law,
Bleicher also analyzed chess endgames with 6 pieces. Since there exist no tablebases
for endgames where one player has only one piece (his king) left, only the 515 remain-
ing 2 vs. 4, 3 vs. 3, and 4 vs. 2 piece distributions have been considered. But with
our program’s duration of about 120 hours per piece distribution3, a complete analysis
would take about 10 years. That is why we applied Monte Carlo sampling with an
investigation of 1, 000, 000 random chess position for each piece distribution.

In the same way the Cordel frequencies for all piece distributions with 3 to 6 pieces
and the two remaining selection rules (the best move per piece and the best move per
piece type rule) were established. The detailed results for each piece distribution and
all three selection rules can be found in Appendix D starting on page 139 (best moves
rule), Appendix E starting on page 159 (best move per piece rule) and Appendix F
starting on page 179 (best move per piece type rule).

Altogether, the following Cordel frequencies were obtained. While the values for k ∈
{3, 4, 5} were established by full tablebase analysis, the values for k = 6 are the results
of Monte Carlo simulations.

number of pieces k = 3 k = 4 k = 5 k = 6

CF(k) best moves rule ≈ 84% ≈ 80% ≈ 77% ≈ 75%
CF(k) best move per piece rule ≈ 52% ≈ 58% ≈ 63% ≈ 59%
CF(k) best move per piece type rule ≈ 52% ≈ 52% ≈ 57% ≈ 54%

3The durations may vary considerably depending on the piece distribution.
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1.3. The Validity of the Three Moves Law in Chess Endgames

The results above show that the Cordel frequencies for the best moves rule are con-
siderably greater than 50%. Thereby we have demonstrated that the Three Moves
Law is a good rule of thumb, but of course it does not hold in every chess position.
Nevertheless, our results cannot be carried over to reality without mentioning that we
allowed any theoretically possible chess position regardless of whether the position is
reasonable or not.

Example 1.3.5
This chess position is not very reasonable, since a good chess player would almost never
promote two pawns to bishops of the same color!

8 0Z0Z0Z0Z
7 Z0Z0Z0Zk
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0ZB
2 0Z0Z0Z0Z
1 J0Z0ZBZB

a b c d e f g h
�

FEN: 8/7k/8/8/8/7B/8/K4B1B w - - 0 1

Keeping this in mind, we want to make some educated guesses regarding the Cordel
frequency CF(k) for the best moves rule and k > 6. An observation of the four es-
tablished values for k ∈ {3, 4, 5, 6} shows that the Cordel frequency decreases with
increasing k, but more and more slightly. From this we conjecture that the Cordel
frequency is monotonically decreasing in k for k ≤ 32. We furthermore conjecture that
the Cordel frequency CF(k), k ≤ 32, for chess is always considerably greater than 50%.

The frequencies for the best move per piece and the best move per piece type rule
(k ≤ 32) are, as we presume, probably all between 50% and 60%. But without larger
(endgame) tablebases these conjectures are difficult to prove.

We conclude by emphasizing that the Three Moves Law is a good rule of thumb at
least in chess endgames. In particular we point out that the Cordel frequency for the
best moves rule, which is probably the most important selection rule in practice, is
considerably greater than 50%.
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1. The Cordel Property

1.4 The Cordel Frequency for

Arbitrary Optimization Problems

In Definition 1.2.10 we presented the generalized Cordel property as a property of
moves in a given chess position. We generalize this concept by moving on from moves
in chess to arbitrarily chosen feasible solutions x1, x2, and x3 of a given optimization
problem, where x1 is the best and x3 the worst of the three solutions.

Definition 1.4.1 (Generalized Cordel Property for Optimization Problems)
Let x1, x2, and x3 be three arbitrary feasible solutions of a given optimization problem.
Furthermore let x1 be the best and x3 be the worst of the three solutions. That means

(i) for minimization problems f (x1) ≤ f (x2) ≤ f (x3)

(ii) and for maximization problems f (x1) ≥ f (x2) ≥ f (x3).

We say that the ordered triple (x1, x2, x3) fulfills the generalized Cordel property
(GeCoP) if and only if

d1 := |f (x1)− f (x2)| ≥ |f (x2)− f (x3)| =: d2 (GeCoP)

holds.

Note that this is in principle the same formula as for the definition of the generalized
Cordel property for chess. The only difference is that we now consider three arbitrary
feasible solutions x1, x2, x3 instead of the three moves m1,m2,m3. That is why we used
the name (GeCoP) again.

Just as with chess, we define selection rules as follows.

Definition 1.4.2 (Selection Rule)
A rule S is called selection rule if it chooses three feasible solutions x1, x2, and x3,
where x1 is the best and x3 is the worst of the three solutions.

We propose the following two selection rules.

Definition 1.4.3 (Selection Rules for Optimization Problems)
Given an arbitrary optimization problem P we define the following selection rules.

(i) x1, x2, and x3 are the three best solutions of P. This rule is called the best
solutions rule.

(ii) In Chapter 2 we introduce the penalty method which is a method to compute
alternative solutions. The penalty selection rule chooses an optimal solution
x1 and the first and second penalty alternatives as x2 and x3. This selection rule,
introduced here very informally, is defined more precisely in the following Chapter
2.
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1.4. The Cordel Frequency for Arbitrary Optimization Problems

Note, that these two selection rules are not always applicable. In case of discrete opti-
mization problems, the best solutions rule is always usable, but in case of continuous
optimization problems there exists no second-best solution (see for example the con-
tinuous optimization problem from Example 2.3.9).

In practice, the penalty selection rule is of great interest because the three best so-
lutions chosen by the best solutions rule are often too similar. In fact x2 and x3 are
typically only micro mutations of x1: For example when planning a route from Seattle
to Chicago, x2 might be exactly the same as x1 except for a side trip through a parking
lot in Minneapolis. This problem can be solved by using the penalty method which
generates only true alternatives that have a good functional value but differ signifi-
cantly from the optimal solution.

With these definitions of the general Cordel property and of selection rules for arbitrary
optimization problems, we want to examine how often (GeCoP) holds for certain types
of optimization problems. In addition to the selection rules, we also need a rule for how
to generate random problem instances. Such generating rules cannot be generalized
because they depend on the considered optimization problem. They will be defined
later on, before we get to the experimental results.

Definition 1.4.4 (Cordel Frequency for Optimization Problems)
Consider a specific optimization problem T , a selection rule S, and a rule R for gen-
erating random instances of T .
The Cordel frequency CF of (T, S,R) or shortly CF(T ), when S and R are obvious,
is the probability that (GeCoP) holds for a random instance, thus

CF(T ) := P (d1 ≥ d2) = P (|f (x1)− f (x2)| ≥ |f (x2)− f (x3)|) . (1.2)

At first sight it may appear strange to weight d1 > d2 and d1 = d2 equally. One could
think of CF(T ) := P (d1 > d2) + 1

2
P (d1 = d2) as a better criterion, for example. But

in fact the equality d1 = d2 is important for describing the Three Moves Law since in
the case of three equally best solutions f (m1) = f (m2) = f (m3), and consequently
d1 = d2 = 0, holds.

By defining d1 as the absolute value of the difference f (x1)−f (x2), the definition above
can be applied to minimization as well as maximization problems. But the selection
rule S must ensure that the functional values f (x1) , f (x2), and f (x3) are increasing
(for minimization problems), or decreasing (for maximization problems), such that x1

is always the best of the three solutions.

Remark 1.4.5
The Cordel frequency is defined as a probability. But for typical problems this probability
cannot be computed, as far as we know, because of the computational difficult choosing
candidates for a given selection rule. Thus the Cordel frequencies stated in this paper
are in fact only relative frequencies and not the real probabilities. However, by the huge
number of observed random instances the relative frequencies are good approximations
for the real Cordel frequencies.
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Chapter 2

The Penalty Method for
General Sum-Type Problems

In his doctoral thesis [Sch 2003], S. Schwarz introduced the penalty method for specific
discrete optimization problems called sum-type optimization problems. In this chapter
we generalize his approach to more general optimization problems.

2.1 Motivation

If someone is planning a journey by car, he can use route planning software for com-
puting the shortest route. But one must keep in mind that this software computes
the best solution only based on average (expected) times or on pure lengths (cf. Sub-
section 3.3.1). The real travel times depend, for example, on the weather and traffic
volume. Hence it could be helpful to have an alternative route at the back of one’s mind
which can be chosen if, for example, a traffic jam occurs on the originally planned route.

Interpreting this route planning problem as a shortest path problem in a weighted,
directed graph, it is possible to compute the shortest and the second shortest route
from the start to the finish. But the second shortest route has one main disadvantage.
It is useless in practice since it is almost always just a micro mutation of the shortest
route which hardly differs from the original optimal solution. For example the second
best route might differ only in a side trip through a parking lot. Thus, this alternative
solution will not help us avoiding a traffic jam on the main route.

We can formalize the example above slightly and get two requirements that a good
alternative solution should fulfill.

1. An alternative solution should have a good functional value.

2. An alternative solution should differ considerably from the optimal solution be-
cause in case of a micro mutation the risk is high that a worsening of the original
solution also implies a worsening of the similar alternative.

As shown in the routing example above, computing the second-best solution to a given
optimization problem almost always provides micro mutations and thus no useful al-
ternative solution.
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2. The Penalty Method for General Sum-Type Problems

The penalty method [Ber 2000, ABS 2002, Sch 2003, Sam 2005, Dör 2009] is an ap-
propriate method to generate such alternative solutions.

2.2 The General Penalty Method

In his doctoral thesis [Sch 2003], Schwarz introduced the penalty method for sum-type
optimization problems. Concretely he defined

Definition 2.2.1 (Σ-Type Optimization Problem, [Sch 2003, p. 2])
Let E be an arbitrary finite set and S ⊆ P(E) a subset of the power set of E. We call
E the base set and the elements of S feasible subsets of E. Let w : E → R be a
real-valued weight function on E. For every B ∈ S we set w(B) =

∑
e∈B w(e).

We call the optimization problem min
B∈S

w(B) a sum-type optimization problem and

use the abbreviated name Σ-type problem.

From now on the lifting of a function w : E → R to subsets B of E as defined above
will not be mentioned explicitly.

By substituting w with −w every maximization problem can be formulated as a min-
imization problem, too. Thus the definition covers a large range of discrete and com-
binatorial optimization problems, such as

� the shortest path problem [AMO 1993, pp. 93-165]

� the minimum spanning tree problem [AMO 1993, pp. 510-542]

� the assignment problem [HK 2000, pp. 185-198]

� the traveling salesperson problem [Jun 2005, pp. 433-474]

� the binary knapsack problem [MT 1990, pp. 13-80]

� the sequence alignment problem [Les 2008, p. 243].

Let us have a look at the knapsack problem. Obviously the binary variant, which
restricts the number of copies of each kind of item to one or zero, is a Σ-type problem.
The bounded or unbounded knapsack problem (see problem definition in Appendix H
on page 205 or [MT 1990, pp. 81-103]), where it is allowed to take more than one copy
of each item, can be formulated as a Σ-type problem, too, by replicating items as often
as they are allowed to be taken. We will illustrate this binary representation of the
unbounded knapsack problem later in Example 2.2.9 on page 29.

In the same way the transportation problem with integer supplies si and demands di
(see problem definition in Appendix H on page 206 or [BJS 1990, pp. 477-499]) can
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2.2. The General Penalty Method

be formulated as Σ-type problem. But allowing the capacities to be real-valued trans-
forms the former discrete optimization problem into a continuous problem which is not
covered by Schwarz’s definition of Σ-type problems. That is why we want to generalize
the penalty method of Schwarz from Σ-type problems to a more general type of op-
timization problems. Actually, only minor effort is required since the definitions and
theorems of Schwarz do not depend on his explicit definition of the Σ-type structure.

Definition 2.2.2 (General Penalty Method)
Assume a minimization problem of the form

min
B∈S

w′B

with a nonempty and bounded set of feasible solutions S ⊆ Rn and a real-valued weight-
vector w ∈ Rn. Further, let 0 ≤ p ∈ Rn denote a positive-real-valued penalty vector.
For every ε > 0, let B(ε) be one of the optimal solutions of the problem

min
B∈S

w(ε)′B with w(ε) := w + ε · p .

Additionally we define the solution B(∞) as a solution with minimal value p′B, and
among all such solutions with a minimal value w′B.

p′B(∞) ≤ p′B for all B ∈ S
w′B(∞) ≤ w′B for all B ∈ S with p (B) = min

B∈S
p′B

We write

B(∞) = lex min
B∈S

(p′B,w′B)

where lex min stands for lexicographical minimization as described above.

We call B(ε) an ε-penalty alternative or ε-alternative and w(ε) the penalized
weight.

We now introduce the following notation.

Definition 2.2.3 (Weight, Penalized Part, and Penalized Value)
Let B ∈ S be a feasible solution. Then we call w(B) := w′B the weight, p(B) := p′B

the penalized part, and fε(B) := w(ε)′B the penalized value or penalized weight
of B.

We clarify the two definitions in several examples. We start with Example 2.2.5 where
we compute ε-penalty alternatives for a shortest path problem. While shortest path
problems are already covered by Schwarz’s definition of the penalty method for Σ-type
problems, the following Example 2.2.6 deals with the transportation problem with
real-valued supplies and demands.
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2. The Penalty Method for General Sum-Type Problems

Remark 2.2.4
In principle it is not necessary to limit the definition to vectors w and p. The penalty
method could be applied to arbitrary optimization problems where we are able to define
a penalty function p : S → R. In that case the ε-penalty alternative would be an optimal
solution of the optimization problem

min
B∈S

w(B) + ε · p(B) ,

where w : S → R and p : S → R are arbitrary real-valued weight and penalty functions.
Here, we chose to study only the case of linear functions, because in that case there
exists a canonical choice of the penalty vector p, which we are going to present in Def-
inition 2.2.7 on page 28.

Furthermore the assumption that S ⊆ Rn is bounded is not always essential. The
advantage of this assumption is that it ensures the existence of an optimal solution for
each considered optimization problem as long as S is nonempty.

Example 2.2.5
We consider the following simple shortest path problem where s is the start and t is the
target.

3 5

1 6

4 2
s t

a

b

c

The red path s− b− t is the optimal solution with w(s− b− t) = 6.

To convert this shortest path problem into an optimization problem of the form min
B∈S

w′B

we introduce the weight vector1

w = [ 3︸︷︷︸
=w(s−a)

, 5︸︷︷︸
=w(a−t)

, 1︸︷︷︸
=w(s−b)

, 6︸︷︷︸
=w(b−t)

, 4︸︷︷︸
=w(s−c)

, 2︸︷︷︸
=w(c−t)

]

representing the weights of the edges [(s − a), (a − t), (s − b), (b − t), (s − c), (c − t)].
Furthermore, we have to specify the set of feasible solutions S ⊆ {0, 1}6, which shall
include the only three feasible paths from s to t namely s−a− t, s− b− t, and s− c− t.
Thus we set

S = {[1, 1, 0, 0, 0, 0]︸ ︷︷ ︸
= s−a−t

, [0, 0, 1, 1, 0, 0]︸ ︷︷ ︸
= s−b−t

, [0, 0, 0, 0, 1, 1]︸ ︷︷ ︸
= s−c−t

} ,

where 1 means that the edge is used in the path and 0 means that the edge is not used.

1Note that we write vectors as row vectors with square brackets according to Matlab syntax
[Matlab 2008].
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2.2. The General Penalty Method

Lastly, we need a penalty vector p. For example p could penalize all edges in the opti-
mal solution [0, 0, 0, 0, 1, 1], say p = [0, 0, 0, 0, 1.5, 0.5]. This vector p ≥ 0 can be chosen
without any further restrictions. Our hidden agenda was to penalize all edges used in
the optimal solution, but the concrete values p(s − c) = 1.5 and p(c − t) = 0.5 were
chosen arbitrarily but positive.

To compute an ε-penalty alternative we consider the penalized weight vector w(ε) which
is

w(ε) = w + ε · p = [3, 5, 1, 6, 4, 2] + ε · [0, 0, 0, 0, 1.5, 0.5]
= [3, 5, 1, 6, 4 + 1.5 · ε, 2 + 0.5 · ε] .

Hence, p penalizes the edges s − c and c − t by increasing their weights. Thereby the
edge s− c is penalized stronger than the edge c− t because of

p(s− c) = 1.5 > 0.5 = p(c− t) .

For ε = 0.2 we get

w(0.2) = w + 0.2 · p = [3, 5, 1, 6, 4, 2] + 0.2 · [0, 0, 0, 0, 1.5, 0.5]
= [3, 5, 1, 6, 4.3, 2.1]

as penalized weight vector and the penalized graph shown in Figure 2.2.1-(a). As we
can see, s− c− t is still the shortest path from s to t. Thus, s− c− t is not only the
optimal solution but also the 0.2-penalty alternative.

Now we increase ε to ε = 0.5 and get the following penalized weight vector and the
graph shown in Figure 2.2.1-(b).

w(0.5) = w + 1 · p = [3, 5, 1, 6, 4, 2] + 0.5 · [0, 0, 0, 0, 1.5, 0.5]
= [3, 5, 1, 6, 4.75, 2.25]

Therewith s − b − t and s − c − t have the same weights now. Thus, both paths are
0.5-penalty alternatives.

3 5

1 6

4.3 2.1

s t

a

b

c

(a) ε = 0.2

3 5

1 6

4.75 2.25

s t

a

b

c

(b) ε = 0.5

3 5

1 6

5.5 2.5

s t

a

b

c

(c) ε = 1

Figure 2.2.1: Penalized graphs and penalty alternatives (red marked paths) for different
penalty parameters ε.
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2. The Penalty Method for General Sum-Type Problems

Furthermore, we consider ε = 1 with

w(1) = w + 1 · p = [3, 5, 1, 6, 4, 2] + 1 · [0, 0, 0, 0, 1.5, 0.5]
= [3, 5, 1, 6, 5.5, 2.5]

and the graph shown in Figure 2.2.1-(c). Here, path s− c− t has the penalized weight
5.5 + 2.5 = 8 and path s − b − t has the penalized weight 1 + 6 = 7. Consequently
s− b− t is the 1-penalty alternative and s− c− t is no penalty alternative any longer.

Finally we consider ε =∞. The ∞-penalty alternative was defined as

B(∞) = lex min
B∈S

(p′B,w′B) = lex min
B∈S

(p(B), w(B))

which means that B(∞) has a minimal value p(B) := p′B. We compute

for s− a− t: p(s− a− t) = [0, 0, 0, 0, 1.5, 0.5]′ · [1, 1, 0, 0, 0, 0] = 0 ,
for s− b− t: p(s− b− t) = [0, 0, 0, 0, 1.5, 0.5]′ · [0, 0, 1, 1, 0, 0] = 0 , and
for s− c− t: p(s− c− t) = [0, 0, 0, 0, 1.5, 0.5]′ · [0, 0, 0, 0, 1, 1] = 2 .

Hence, both s− a− t and s− c− t have a minimal value p(B). From these two paths
we choose the solution with a minimal value w(B). Because

w (s− a− t) = 8 > 7 = w (s− b− t)

we get B(∞) = s− b− t. This completes Example 2.2.5.

After this illustrative example, the next example deals with the transportation problem
with real valued supplies and demands. This real valued problem was not covered by
Schwarz’s penalty method.

Example 2.2.6
Consider two suppliers which supply s1 = 0.45 and s2 = 0.55 units of a particular
good. On the other hand side we have three recipients which require d1 = 0.1, d2 = 0.3,
and d3 = 0.6 units of this good. For the transportation of one unit from supplier i to
recipient j transportation costs cij arise. Let

C =

[
0.25 0.75 0.3
0.4 0.35 0.2

]
be the matrix of transportation costs.

A clear presentation is given by the following table.

d1 = 0.1 d2 = 0.3 d3 = 0.6
s1 = 0.45 0.25 0.75 0.30
s2 = 0.55 0.40 0.35 0.20
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2.2. The General Penalty Method

The transportation problem is now to satisfy the demands without exceeding the sup-
plies and with minimal transportation costs. Hence, we get the following optimization
problem.

min
x∈R2×3

0.25x11 + 0.75x11 + 0.3x11 + 0.4x11 + 0.35x11 + 0.2x11 (2.1)

s.t. x11 +x12 +x13≤ s1 = 0.45
x21 +x22 +x23≤ s2 = 0.55

x11 +x21≥ d1 = 0.1
x12 +x22≥ d2 = 0.3
x13 +x23≥ d3 = 0.6

xij ≥ 0 for i = 1, 2 and j = 1, 2, 3

By writing the matrices as vectors we get the following representation.

min
x∈R6

[0.25, 0.75, 0.3, 0.4, 0.35, 0.2]′ · x (2.2)

s.t. x1 +x2 +x3≤ s1 = 0.45
x4 +x5 +x6≤ s2 = 0.55

x1 +x4≥ d1 = 0.1
x2 +x5≥ d2 = 0.3
x3 +x6≥ d3 = 0.6

xi ≥ 0 for i = 1, . . . , 6

For better readability we continue using the matrix representations of the optimization
as in (2.1) instead of the vector representation in (2.2). For this transportation problem

B(0) =

[
0.1 0 0.35
0 0.3 0.25

]
is the optimal solution. As in Example 2.2.5 before, we need to specify either a penalty
vector or a penalty matrix. For penalty matrix

P =

[
0.025 0 0.105
0 0.105 0.05

]
we compute the penalty alternative for ε = 2. Therefore we consider the penalized
transportation costs.

C(2) := C + 2 · P =

[
0.25 0.75 0.3
0.4 0.35 0.2

]
+ 2 ·

[
0.025 0 0.105
0 0.105 0.05

]
=

[
0.3 0.75 0.51
0.4 0.56 0.30

]
The penalized transportation problem provides the optimal solution

B(2) =

[
0.1 0.3 0.05
0 0 0.55

]
6=
[

0.1 0 0.35
0 0.3 0.25

]
= B(0)

which is the 2-penalty alternative. This completes Example 2.2.6.
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2. The Penalty Method for General Sum-Type Problems

As we saw in the Examples 2.2.5 and 2.2.6, Definition 2.2.2 of the penalty method is
rather general and needs to be specified for practical purposes because one needs to
choose a practical penalty vector p. We recommend the following canonical penalty
vector.

Definition 2.2.7 (Canonical Penalty Vector)
Assume S ⊆ Rn

+ and let B(0) denote an optimal solution of the original optimization
problem.

If all nonzero weights wi 6= 0, i ∈ {1, . . . , n} have the same sign (all positive or all
negative), we define the canonical penalty vector p by

pi =

{
|wi|B(0)

i iff B
(0)
i 6= 0, i.e. element i is used in B(0)

0 iff B
(0)
i = 0, i.e. element i is not used in B(0)

= |wi| ·B(0)
i . (2.3)

This means that when w ≥ 0 each element i used in B(0) is punished by its weight wi
multiplied by the frequency or amount (for non-integer solutions) B

(0)
i . If there exist

i, j ∈ {1, . . . , n} with sgn (wi) = +1 and sgn (wj) = −1, then we do not see a straight
forward definition of a canonical penalty vector.

Example 2.2.8 (Continuation of Example 2.2.6)
In the transportation problem in Example 2.2.6 we had the following transportation
costs C, optimal solution B(0) and penalty matrix P .

C =

[
0.25 0.75 0.3
0.4 0.35 0.2

]
, B(0) =

[
0.1 0 0.35
0 0.3 0.25

]
, P =

[
0.025 0 0.105
0 0.105 0.05

]
In this example we already used the canonical penalty vector (or in this case penalty
matrix) as the following computation shows.[

0.25 · 0.1 0.75 · 0 0.3 · 0.35
0.4 · 0 0.35 · 0.3 0.2 · 0.25

]
=

[
0.025 0 0.105
0 0.105 0.05

]
= P

In Appendix G , starting on page 199, one finds two longer Examples. In Example G.1
all penalty alternatives for a shortest path problem in an undirected graph are com-
puted. Example G.2 deals with the same instance represented as a directed graph.
We show that the canonical penalty vector provides different penalty alternatives for
these two equivalent representations of the same graph. Hence, one must first think
carefully about whether the canonical penalty vector is the right choice for concrete
optimization problems.

The following three-page example deals with a similar problem which can occur in case
of a knapsack problem.
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2.2. The General Penalty Method

Example 2.2.9
We consider the following unbounded knapsack problem (cf. Appendix H on page 205)

max
x∈Nn

v′x s.t. w′x ≤ C ⇔ min
x∈Nn
−v′x s.t. w′x ≤ C

with

item values v= [6, 10, 7, 11], knapsack capacity C = 8
item weights w= [2, 3, 5, 6], number of items n= 4.

(UKP1)

In an unbounded knapsack problem each item can be packed into the knapsack as often
as it fits into it. This implies that it is possible to copy items without changing the
optimization problem. For example

v= [6, 6, 10, 10, 10, 7, 11], C = 8
w= [2, 2, 3, 3, 3, 5, 6], n= 4.

(UKP2)

represents the same optimization problem as (UKP1). These two representations of
the same unbounded knapsack problem are illustrated in Figure 2.2.2 (a) and (b) below.
The weights of the items and the knapsack capacity are represented by the heights of
the boxes. The numbers in the boxes represent the item values.
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(b) Representation (UKP2) with multiple items.

Figure 2.2.2: Two representations (UKP1) and (UKP2) of the same unbounded knapsack

problem with item number vectors I and I, optimal solutions B(0) and B
(0)

marked in red, ∞-penalty alternatives B(∞) and B
(∞)

marked in blue and
penalty vectors p and p.

Now we enumerate the items in (UKP1) which shall be represented by the following
item-number-vector I = [1, 2, 3, 4]. We can do the same with problem (UKP2) which
contains copies of some items. With the item number vector

I = [1, 1, 2, 2, 2, 3, 4]

it is possible to figure out which of the original items is represented by (vi, wi). For
example item j = 3 in (UKP2) with value vj = 10 and weight wj = 3 is the same
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2. The Penalty Method for General Sum-Type Problems

as item Ij = 2 in (UKP1). Thus for Ii = Ij, item i in problem (UKP1) and item
j in problem (UKP2) are the same. The item index vector I also helps to transform
feasible solutions of (UKP2) into feasible solutions of (UKP1). So, let B ∈ Nn be
a feasible solution of (UKP2). Then the i-th element of the corresponding feasible
solution B ∈ Nn is the sum of all components of B representing item i

Bi =
∑
j: Ij=i

Bj . (2.4)

For example observe B
(0)

= [1, 0, 1, 1, 0, 0, 0] with functional value −v
(
B

(0)
)

= −26.

This is an optimal solution to (UKP2). We compute

B
(0)
1 =

∑
j: Ij=1

B
(0)

j =
∑

j∈{1,2}

B
(0)

j = 1 ,

B
(0)
2 =

∑
j: Ij=2

B
(0)

j =
∑

j∈{3,4,5}

B
(0)

j = 2 ,

B
(0)
3 =

∑
j: Ij=3

B
(0)

j = B
(0)

6 = 0 ,

B
(0)
4 =

∑
j: Ij=4

B
(0)

j = B
(0)

7 = 0 .

This means that the optimal solution B
(0)

= [1, 0, 1, 1, 0, 0, 0] to (UKP2) corresponds
to the optimal solution B(0) = [1, 2, 0, 0] to (UKP1) with −v

(
B(0)

)
= −26. Note that

B(0) is the uniquely determined optimal solution to (UKP1) while the optimal solution
to (UKP2) is not uniquely determined. In fact, each B ∈ Nn with∑

j: Ij=1

Bj = B
(0)
1 = 1

∑
j: Ij=2

Bj = B
(0)
2 = 2∑

j: Ij=3

Bj = B
(0)
3 = 0

∑
j: Ij=4

Bj = B
(0)
4 = 0

is an optimal solution to (UKP2) since (UKP1) and (UKP2) are representations of the

same unbounded knapsack problem. The two chosen optimal solutions B(0) and B
(0)

are shown in Figure 2.2.2 in red.

These optimal solutions provide the canonical penalty vectors p for (UKP1) and p for
(UKP2).

p =
[
v1 ·B(0)

1 , v2 ·B(0)
2 , v3 ·B(0)

3 , v4 ·B(0)
4

]
= [1 · 6, 2 · 10, 0, 0] = [6, 20, 0, 0]

p =
[
v1 ·B

(0)

1 , v2 ·B
(0)

2 , v3 ·B
(0)

3 , v4 ·B
(0)

4 , v5 ·B
(0)

5 , v6 ·B
(0)

6 , v7 ·B
(0)

7 ,
]

= [1 · 6, 0, 1 · 10, 1 · 10, 0, 0, 0] = [6, 0, 10, 10, 0, 0, 0]

Note that in the case of a knapsack problem, the vector w does no longer represents the
objective function. Here, the vector −v plays the role of w. That is why we inserted
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2.2. The General Penalty Method

−v into Formula (2.3) on page 28 which defines the canonical penalty vector.

Now we compute ∞-penalty alternatives which are solutions of the minimization prob-
lem

lex min
B∈S

(p (B) ,−v (B)) for (UKP1)

or lex min
B∈S

(
p
(
B
)
,−v

(
B
))

for (UKP2) .

In the compact representation (UKP1) with penalty vector p, the best solution to this
problem (B(∞)) uses none of the items used in B(0). Thus we get B(∞) = [0, 0, 0, 1]
with

−v
(
B(∞)

)
= −11 and p

(
B(∞)

)
= 0.

In representation (UKP2) with penalty vector p there exists a second optimal solution

with penalized part 0: B
(∞)

= [0, 1, 0, 0, 2, 0, 0].

−v
(
B

(∞)
)

= −26 and p
(
B

(∞)
)

= 0.

The two chosen ∞-alternatives are represented in blue in Figure 2.2.2.

Because

−v
(
B

(∞)
)

= 26 = −v
(
B

(0)
)

= min
B∈S
− v

(
B
)

(2.5)

we get

−v
(
·B(∞)

)
+ ε · p

(
B

(∞)
)

︸ ︷︷ ︸
=0

(2.5)

≤ −v
(
B
)
≤ −v

(
B
)

+ ε · p
(
B
)︸ ︷︷ ︸

≥0

for all B ∈ S and all ε ≥ 0. Hence, B
(∞)

is an ε-penalty alternative for all ε ≥ 0.

Actually B
(∞)

is uniquely determined ε-penalty alternative for each ε > 0.

If we take a closer look at B
(∞)

, we see that it is only another representation of the
optimal solution, because the corresponding 4-item solution is again [1, 2, 0, 0] which is
not a ∞-penalty alternative for (UKP1). Thus the penalty method with the canonical
penalty vector provides different alternatives for the two different representations of the
same optimization problem.

One can fix this problem by penalizing every copy of the original items 1 and 2 in the
second representation. The penalty vector

p(2) = [6, 6, 20, 20, 20, 0, 0]

for (UKP1) provides the same penalty alternatives as p provides in (UKP1). This
concludes Example 2.2.9.
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2. The Penalty Method for General Sum-Type Problems

In conclusion we give the following recommendation:

To use the canonical penalty vector one should think about a reasonable representation
of the considered optimization problem. In case of the knapsack problem (cf. Exam-
ple 2.2.9 starting on page 29) one should make sure that there are no multiple copies of
the same item. This is also the reason why we do not represent an unbounded knapsack
problem as a binary knapsack problem and apply Schwarz’s penalty method to it, since
this would lead to strange penalty alternatives. In case of the shortest path problem
(cf. Examples G.1 and G.2 starting on page 199) one should think about whether a
directed or an undirected graph is more reasonable.

Actually, in most cases the canonical penalty vector provides useful results, if one
chooses a reasonable representation of the considered optimization problem. But some-
times one is interested in a more individual penalty function.

As mentioned before, the penalty method from Definition 2.2.2 is a generalization of
the penalty method for Σ-type problems from Schwarz. The following lemma shows
that this generalization still contains the original penalty method from Schwarz.

Lemma 2.2.10
Consider a Σ-type problem in the sense of Schwarz and the canonical penalty vector p
like in (2.3).

Then the penalty method from Definition 2.2.2 is the same as the penalty method from
Definition 2.2.1 in [Sch 2003, pp. 7-8]. That means both methods provide the same
penalty alternatives.

Proof. Consider a Σ-type problem in the sense of Schwarz

min
B∈S

∑
e∈B

w(e)

with a finite base set E (|E| = n), a set of feasible subsets S ⊆ P(E), and a weight
function w : E → R. Let the elements of E be sorted and called e1, . . . , en.

Like in the Examples 2.2.5, G.1, and G.2 on the pages 24, 199, and 201, respectively,
we can represent each element B ∈ S as a vector B ∈ {0, 1}n by

Bi =

{
1, iff ei ∈ B
0, iff ei /∈ B

for i = 1, . . . , n .

Hence the set of feasible subsets S ⊆ P(E) can be transformed to the set of feasible
solutions S ⊆ Rn by collecting the vector representations B of all B ∈ S. In almost
the same manner we can write the weight function w as a vector w ∈ Rn by

wi = w (ei) for i = 1, . . . , n . (2.6)

This representation with S and w under (2.6) is bijective and thereby invertible.
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2.2. The General Penalty Method

Obviously this is only a change in representation. An optimal solution B
(0)

to

min
B∈S

w
(
B
)

is in fact the vector representation of a corresponding optimal solution B(0) to the
original Σ-type problem

min
B∈S

∑
e∈B

w(e) .

Now we can apply the penalty method from Definition 2.2.2 to w and S. With the

canonical penalty vector p, solution B
(ε)

arises as an optimal solution of min
B∈S

fε
(
B
)

with

fε
(
B
)

= w(ε)′B = (w + ε · p)′B = w′B + εp′B

= w′B + ε
n∑
i=1

wi ·B
(0)

i ·Bi =
∑

i : Bi=1

wi + ε
∑

i : Bi=B
(0)
i =1

wi

=
∑
e∈B

w (e) + ε
∑

e∈B∩B(0)

w (e) = w(B) + εw
(
B ∩B(0)

)
.

Thus B
(ε)

is the vector-representation of

B(ε) := arg min
B∈S

[
w(B) + εw

(
B ∩B(0)

)]
,

which is the ε-penalty alternative according to Schwarz’s penalty method. �

Remark 2.2.11
In Lemma 2.2.10 we showed just that our penalty method from Definition 2.2.2 is the
same as the penalty method from Definition 2.2.1 in [Sch 2003, pp. 7-8] if we use the
canonical penalty vector.
But Schwarz stated also a second penalty method which allows the use of an arbitrary
penalty vector p. In analogy to the previous Lemma 2.2.10 one can show that even
Schwarz’s more general penalty method from Definition 2.2.2 [Sch 2003, pp. 8-9] is
covered by our definition.

Guided by Schwarz’s notation, we introduce the following notation.

Definition 2.2.12 (General Σ-Type Problem)
A minimization problem of the form

min
B∈S

w′B

with the set of feasible solutions S ⊆ Rn and a real-valued weight-vector w ∈ Rn is
called general sum-type problem or general Σ-type problem.

These are exactly the optimization problems for which we introduced the penalty
method in Definition 2.2.2. Beside Σ-type problems, the bounded and unbounded
knapsack problem, the real valued transportation problem and real valued network
flow problems examples of general Σ-type problems. These three optimization prob-
lems are defined and explained in Appendix H starting on page 205.
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2. The Penalty Method for General Sum-Type Problems

2.3 Properties of the Penalty Method

We start our observations with a geometric interpretation of the penalty method.
Therefore we consider the (w, p) diagram where every feasible solution B ∈ S is re-
presented by the ordered pair (w(B), p(B)). For the related bi-objective optimization
problem

min
B∈S

(w(B), p(B))

we introduce the following notation.

Definition 2.3.1 (Efficient and Supported Points)
A feasible solution B ∈ S is dominated by another feasible solution D ∈ S, if

w(D) ≤ w(B) as well as p(D) ≤ p(B)

hold and where at least one of the inequalities is fulfilled strictly.

A feasible solution B ∈ S is called efficient or Pareto optimal if no D ∈ S\{B}
exists that dominates B.

Furthermore, we call B ∈ S supported if there is some λ ∈ R2
≥0 such that B is an

optimal solution of

min
B∈S

λ1w(B) + λ2p(B) .

We illustrate the definitions above in the following Example 2.3.2.

Example 2.3.2
Consider an optimization problem with the following ten feasible solutions.

feasible solution B w(B) p(B)

B(0) 40 40
B(1) 45 27
B(2) 61 23
B(3) 64 34
B(4) 80 5
B(5) 86 38
B(6) 86 28
B(7) 95 5
B(8) 97 38
B(9) 98 27 40

40

45

27

61

23

80

5

95

B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9)

w

p
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2.3. Properties of the Penalty Method

The red-marked feasible solutions B(0), B(1), B(2), B(4) and B(7) are the efficient points.
Except for B(2) these are also the supported points. But since B(2) is above the line
segment from B(1) to B(4) there is no objective function λ1w(B)+λ2p(B) with λ1, λ2 ≥ 0
for which B(2) is an optimal solution. Thus, B(2) is not a supported point.

We make the following important observation which is essentially known from multi-
objective optimization theory. But we have to be a little careful with the∞-alternative
B(∞).

Lemma 2.3.3 (Penalty Alternatives and the Concept of Supported Points)
Given a general Σ-type problem, for every feasible solution P ∈ S the following two
statements are equivalent:

(i) There exists an ε ≥ 0 such that P is an ε-penalty alternative.

(ii) There exists a vector λ ∈ R2 with λ1 > 0 and λ2 ≥ 0 such that P is an optimal
solution of

min
B∈S

λ1w(B) + λ2p(B) .

Hence, in the (w, p) diagram each penalty alternative is a supported point.

Proof. The proof is complex for ε =∞ but not difficult.

(ii) ⇒ (i): Let P ∈ S be an optimal solution to min
B∈S

λ1w(B) + λ2p(B) with λ1 > 0

and λ2 ≥ 0. Then P is an ε = λ2
λ1

-penalty alternative, since

λ1w(P ) + λ2p(P ) ≤ λ1w(B) + λ2p(B) for all B ∈ S

⇔ w(P ) +
λ2

λ1

p(P ) ≤ w(B) +
λ2

λ1

p(B) for all B ∈ S

holds.

(i) ⇒ (ii): In the case 0 ≤ ε <∞ we have

w
(
B(ε)

)
+ εp

(
B(ε)

)
≤ w(B) + εp(B)

for all B ∈ S. Thus B(ε) is a supported point because it minimizes the objective func-
tion λ1w(B) + λ2p(B) with λ1 = 1 and λ2 = ε.

Now we consider the case ε = ∞ which is a little bit more complex but still not
difficult. Remember that B(∞) was defined as

B(∞) := lex min
B∈S

(p(B), w(B))

⇔ p(B(∞)) ≤ p(B) for each B ∈ S (2.7)

and w(B(∞)) ≤ w(B) for each B ∈ S with p(B) = min
B′∈S

p(B′) (2.8)

35



2. The Penalty Method for General Sum-Type Problems

We set λ1 := 1 and choose an arbitrary λ2 with

λ2 ≥ 0 and λ2 ≥ max
B′∈S, with

p(B′)>p(B(∞))

{
w
(
B(∞)

)
− w (B′)

p (B′)− p (B(∞))

}
(2.9)

and claim that

λ1w
(
B(∞)

)
+ λ2p

(
B(∞)

)
≤ λ1w(B) + λ2p(B)

⇔ w
(
B(∞)

)
+ λ2p

(
B(∞)

)
≤ w(B) + λ2p(B) (2.10)

holds for all B ∈ S. To see this we consider two cases and show in the first case, that
(2.10) holds for all B ∈ S with p(B) = p

(
B(∞)

)
. The second case deals shows (2.10)

for all B ∈ S with p(B) > p
(
B(∞)

)
.

Case 1: B ∈ S with p(B) = p
(
B(∞)

)
. We multiply inequality (2.7) by λ2 ≥ 0

and add (2.8), getting

w
(
B(∞)

)
+ λ2p

(
B(∞)

)
≤ w(B) + λ2p(B)

for all B ∈ S with p(B) = p
(
B(∞)

)
.

Case 2: B ∈ S with p(B) > p
(
B(∞)

)
. The following inequalities are equivalent.

w
(
B(∞)

)
+ λ2p

(
B(∞)

)
≤ w(B) + λ2p(B)

⇔ w
(
B(∞)

)
− w(B) ≤ λ2

(
p(B)− p

(
B(∞)

))︸ ︷︷ ︸
>0

⇔
w
(
B(∞)

)
− w(B)

p(B)− p (B(∞))
≤ λ2 (2.11)

From (2.9) it follows that (2.11) is true. �

Example 2.3.4
In the previous Example 2.3.2 on page 34 we had four supported points, namely B(0),

B(1), B(4), and B(7). But B(7) is only (equi-)optimal for λ1 = 0. Hence, B(7) is a sup-
ported point, but not a penalty alternative. Conversely, the remaining three supported
points B(0), B(1), and B(4) represent the penalty alternatives.

After this little geometric interpretation of penalty alternatives, which we will use in
Section 5.3, we present the main results of Schwarz and some slight generalizations.
It turns out that all the properties Schwarz proved for the penalty method for Σ-type
problems hold for the general penalty method as well. This is because Schwarz did not
use the Σ-type property in his proofs.
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2.3. Properties of the Penalty Method

Lemma 2.3.5 (Properties of Penalty Alternatives, [Sch 2003, pp. 15-16])
The following two statements hold.

(i) Every penalty alternative P is optimal for all penalty parameters ε in a non-empty
optimality interval IP = [εl, εr] , εl, εr ∈ R ∪ {∞} and for no other parameters.
The case εl = εr is allowed. We call P an interval representative of IP .

(ii) If P and P ′ are two penalty alternatives and IP and IP ′ their optimality intervals,
then only three cases are possible.

a) IP = IP ′, iff w(P ) = w (P ′) and p(P ) = p (P ′).

b) IP ∩ IP ′ = ∅.
c) IP ∩ IP ′ = {ε}. This means the intersection contains only a single epsilon.

This happens if IP and IP ′ are neighboring intervals. A penalty alternative
whose optimality interval contains only a single ε > 0 is called degenerate.
Thereby an optimal solution B(0) is not degenerate by definition.

Proof. The proof can be found in [Sch 2003, pp. 16-17] and in Appendix I.1 starting
on page 207. �

Thus the interval [0,∞] can be decomposed into a set of intervals

[0, ε1] , [ε1, ε2] , [ε2, ε3] , . . . with ε1 < ε2 < . . .

and for each interval Ii = [εi, εi+1] we have a representative solution P (i) with this
optimality interval.

∞0
ε0 ε1 ε2 ε3

threshold parameters

P (0) = B(0) P (1) P (2) P (3) . . .

Definition 2.3.6 (i-th Penalty Alternative, k best Penalty Alternatives)
Consider an interval decomposition with optimality intervals [ε0 := 0, ε1] , [ε1, ε2] ,
[ε2, ε3] , . . . with ε1 < ε2 < . . . and different interval representatives P (i) for each
interval. The border εi between the optimality intervals of P (i−1) and P (i) is called
threshold parameter between P (i−1) and P (i).

The interval representative for Ii = [εi, εi+1], which is denoted by P (i), is called the
i-th penalty alternative. P (i) need not be uniquely determined. This is no prob-
lem since we are only interested in the functional values w

(
P (i)

)
and penalized parts

p
(
P (i)

)
. These values are equal for all interval representatives of the same interval (cf.

Lemma 2.3.5).
Furthermore, the set

{
P (0), P (1), P (2), . . .

}
is called the set of all penalty alterna-

tives and P (0), P (1), . . . , P (k−1) are called the k best penalty alternatives.
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2. The Penalty Method for General Sum-Type Problems

Note that condition ε1 < ε2 < . . . assures that the penalty alternatives P (0), P (1), . . .
are not degenerate. This is especially important since it is possible to have several
degenerate penalty alternatives which are optimal for the same penalty parameter ε
but have all different weights.

For the computation of the Cordel frequency (cf. Definition 1.4.4 on page 19), only
the weights w

(
P (i)

)
of the three best penalty alternatives P (0), P (1), P (2) are required.

Thus, if we allow degenerate penalty alternatives, we would have to compute all de-
generate alternatives in order to get uniquely determined weights of the three best
alternatives. Otherwise, if we do not compute all degenerate penalty alternatives, the
values of the three best penalty alternatives depend on which degenerate alternatives
our algorithm computes. We come back to this problem in Remark 2.4.1 in Section 2.4
which deals with algorithmic issues.

Example 2.3.7
We consider the following shortest path problem.

6

12

10

1 2 3s a b
t

(a) Original Graph (ε = 0).

6

12

10

2 4 6s a b
t

(b) Penalized Graph (ε = 1).

The red path s − a − b − t is the shortest path from s to t and the blue marked path
s− b is the ∞-penalty alternative when penalizing with the canonical penalty vector.

One can easily check that s−a−b−t has [0, 1] and that s−b has [1,∞] as an optimality
interval. But for ε = 1 (cf. Figure (b)) all paths from s to t (especially also s− a− t
and s− b− t) are penalty alternatives. Indeed, s− a− t with weight 11 and s− b− t
with weight 9 are two degenerate penalty alternatives with different weights.

penalty alternative P weight w(P ) penalized part p(P ) optimality interval IP
s− a− b− t 6 6 [0, 1]
s− b− t 9 3 {1}
s− a− t 11 1 {1}
s− b 12 0 [1,∞]

Although s − a − t and s − b − t are penalty alternatives as well, the optimal solution
s− a− b− t is called the zeroth penalty alternative and s− t is called the first (and not
the third) penalty alternative.

The question is now whether this decomposition is always finite. We give the following
theorem.
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Theorem 2.3.8 (Finite Interval Decomposition, Based on [Sch 2003, p. 16])
For Σ-type problems as well as linear optimization problems with a finite number of
basic feasible solutions, the interval [0,∞] can be decomposed into a finite set of in-
tervals [0, ε1] , [ε1, ε2] , [ε2, ε3] , . . . , [εk,∞] such that for each interval Ii = [εi, εi+1] we
have a representative solution P (i) which is optimal for all ε ∈ Ii.

Proof. For Σ-type problems the statement is obviously true because Σ-type problems
have by definition only finitely many feasible solutions. With Lemma 2.3.5 it follows
that P (0), P (1), P (2), . . . have to be all different and we can thus have only finitely many
penalty alternatives and threshold parameters. This part has already been shown in
[Sch 2003, p. 16].

For linear optimization problems with a finite number of basic feasible solutions the
statement is also true because by increasing the penalty parameter ε we only change
the slope of the objective function. Thus penalty alternatives have to be vertices of the
polyhedron of feasible solutions. Since the vertices of the feasible polyhedron are the
basic feasible solutions and since there are only finitely many basic feasible solutions
by assumption, we can conclude that there are only finitely many threshold parameters
again. �

The following example shows that there exist general Σ-type problems with infinitely
many threshold parameters.

Example 2.3.9 (Infinitely Many Threshold Parameters)

Consider the following minimization problem with a bounded fea-
sible region S.

min
x∈R2

x1 s.t. x2 ≥ 1−
√

2x1 − x2
1

0 ≤ x1, x2 ≤ 1 x1

x2

S

1

1

x(0) = [0, 1] is the uniquely determined optimal solution. With the canonical penalty
vector p = [0, 1], an ε-penalty alternative is an optimal solution of the problem

min
x∈R2

x1 + εx2 s.t. x2 ≥ 1−
√

2x1 − x2
1 ,

0 ≤ x1, x2 ≤ 1 .

It follows, that

x(ε) =

[
1− 1√

1 + ε2
, 1− ε√

1 + ε2

]
∈ S ⊆ R2

is the uniquely determined ε-penalty alternative. Thus, each ε ≥ 0 provides another
penalty alternative x(ε). Consequently, we have infinitely many threshold parameters
even though the feasible region is bounded.
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2. The Penalty Method for General Sum-Type Problems

From Althöfer, Berger and Schwarz we have the following theorem regarding the
weights and penalized parts of penalty alternatives.

Theorem 2.3.10 (Althöfer, Berger, Schwarz [ABS 2002])
Let w : E → R be a real-valued function and p : E → R+ a positive real valued function
on E. Let B(ε) be defined according to Definition 2.2.2 for ε ∈ R+. The following four
statements hold:

(i) p
(
B(ε)

)
is weakly monotonically decreasing in ε.

(ii) w
(
B(ε)

)
is weakly monotonically increasing in ε.

(iii) w
(
B(ε)

)
− p

(
B(ε)

)
is weakly monotonically increasing in ε.

(iv) w
(
B(ε)

)
+ ε · p

(
B(ε)

)
is weakly monotonically increasing in ε.

Proof. The proof was given by [Sch 2003, p. 10]. In slightly different notation it can
be found in Appendix I.2 starting on page 209. �

Thus, the penalized part decreases and the weight of B(ε) increases as ε increases. The
following theorem gives a more precise statement.

Theorem 2.3.10’
Given two arbitrary consecutive penalty alternatives P (i) and P (i+1) (i ≥ 0), the fol-
lowing two statements hold.

(i) p
(
P (i)

)
> p

(
P (i+1)

)
.

(ii) For i ≥ 1 it holds that w
(
P (i)

)
< w

(
P (i+1)

)
and for i = 0 holds that w

(
P (0)

)
≤

w
(
P (1)

)
.

Statement (i) can be found in [Sch 2003, p. 17] in a slightly different context as an
argument within a proof (proof of property (3)) rather than a theorem.

Proof. Let Ii = [εi, εi+1] and Ii+1 = [εi+1, εi+2] denote the optimality intervals of P (i)

and P (i+1). Then the following two statements hold.

1. ε ≤ εi+1 for all ε for which P (i) is optimal.

2. ε ≥ εi+1 for all ε for which P (i+1) is optimal.

Thus p
(
P (i)

)
≥ p

(
P (i+1)

)
and w

(
P (i)

)
≤ w

(
P (i+1)

)
hold according to Theorem 2.3.10.

Now we want to show that the strict inequalities

p
(
P (i)

)
> p

(
P (i+1)

)
for i ≥ 0 ,

w
(
P (i)

)
< w

(
P (i+1)

)
for i ≥ 1

hold.
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2.3. Properties of the Penalty Method

For the threshold parameter εk between P (i) and P (i+1) the following holds.

fε
(
P (i)

)
= fε

(
P (i+1)

)
⇔ w

(
P (i)

)
+ εp

(
P (i)

)
= w

(
P (i+1)

)
+ εp

(
P (i+1)

)
⇔ w

(
P (i)

)
− w

(
P (i+1)

)
= ε

(
p
(
P (i+1)

)
− p

(
P (i)

))
From this it follows that p

(
P (i)

)
= p

(
P (i+1)

)
implies w

(
P (i)

)
= w

(
P (i+1)

)
, which with

Lemma 2.3.5 implies that P (i) and P (i+1) have the same optimality intervals. This is
a contradiction, because P (i) and P (i+1) are representatives for different optimality in-
tervals.

In the case i ≥ 1, ε > 0 holds. Thus we conclude analogously that w
(
P (i)

)
= w

(
P (i+1)

)
implies p

(
P (i)

)
= p

(
P (i+1)

)
, which is again a contradiction. �

So we get the following picture.

∞0
ε0 ε1 ε2 ε3

w
(
P (0)

)
≤ w

(
P (1)

)
< w

(
P (2)

)
< . . .

p
(
P (0)

)
> p

(
P (1)

)
> p

(
P (2)

)
> . . .

Lemma 2.3.11
The threshold parameter εi between the penalty alternatives P (i−1) and P (i) is

εi =
w
(
P (i)

)
− w

(
P (i−1)

)
p (P (i−1))− p (P (i))

.

Proof. Since εi is the threshold parameter between P (i−1) and P (i) both penalty alter-
natives must have the same penalized value for ε = εi. With p

(
P (i−1)

)
6= p

(
P (i)

)
, as

guaranteed by Theorem 2.3.10’, the following holds:

fεi
(
P (i−1)

)
= fεi

(
P (i)

)
⇔ w

(
P (i−1)

)
+ εi · p

(
P (i−1)

)
= w

(
P (i)

)
+ εi · p

(
P (i)

)
⇔ εi =

w
(
P (i)

)
− w

(
P (i−1)

)
p (P (i−1))− p (P (i))

�

With this lemma it follows that for rational vectors w, p ∈ Qn the threshold parame-
ters ε1, ε2, . . . are also rational. Please note that the canonical penalty vector p from
Definition 2.2.7 on page 28 is rational if the weight vector w is rational and if the used
optimal solution B(0) is integer.

At the end of this section we formalize Definition 1.4.3 (ii) on page 18 of the penalty
selection rule. This leads to the following definition of the Cordel Frequency.
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2. The Penalty Method for General Sum-Type Problems

Definition 2.3.12 (Cordel Frequency for the Penalty Selection Rule)
Consider an arbitrary general Σ-type problem. Then the penalty selection rule P
chooses the three best penalty alternatives x1 = P (0) = B(0), x2 = P (1), and x3 = P (2)

with

w (x1) ≤ w (x2) < w (x3) .

Hence, the Cordel frequency for the penalty selection rule is

CF = P (d1 ≥ d2) = P
(
w
(
P (1)

)
− w

(
P (0)

)
≥ w

(
P (2)

)
− w

(
P (1)

))
. (2.12)

The next section deals with modifications of the algorithm of Schwarz in order to
compute the k best penalty alternatives. Running time improvements and numerical
stability are also covered there. Afterwards, in Chapter 3 starting on page 67, we
present the Cordel frequencies for different examples of general Σ-type problems under
the penalty selection rule.

2.4 Computation of the k Best Penalty

Alternatives P (0), P (1), . . . , P (k−1)

2.4.1 The Algorithm of Schwarz for Computing all Penalty
Alternatives

On page 15 of his doctoral thesis Schwarz introduced an algorithm for Σ-type problems
which computes a sequence P of ε-optimal solutions covering all ε ≥ 0. This is in fact
the set of all penalty alternatives {P (0), P (1), . . . } as well as potentially some degenerate
penalty alternatives. Since this algorithm also works for general Σ-type problems with
finitely many penalty alternatives we present it here. Note that we made some slight
changes especially in notations that do not affect the basic idea of the algorithm.

Algorithm 1 (Algorithm of Schwarz for Computing all Penalty Alterna-
tives, [Sch 2003, p. 15])
The algorithm computes an ordered set of penalty alternatives P and the corre-
sponding ordered set of threshold parameters T .

Initialization: Compute B(0) and B(∞). As in Definition 2.2.2, B(0) is an
optimal solution which minimizes w(B) and B(∞) is a solution which minimizes
p(B) and has a w(B)-value as small as possible.

If p
(
B(0)

)
= p

(
B(∞)

)
, then the solution B(0) is optimal for all ε ≥ 0. Hence, we

set P =
[
B(0)

]
and T = [ ] stop.
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2.4. Computation of the k Best Penalty Alternatives P (0), P (1), . . . , P (k−1)

Otherwise set

number of computed penalty alternatives m := 2 ,

left penalty alternative and threshold parameter L := B(0) , εL := 0 ,

right penalty alternative and threshold parameter R := B(∞) , εR :=∞

and go to Step 1.

Branching:

Step 1 Compute the potential threshold parameter ε between L and R by

w (L) + ε · p (L) = w (R) + ε · p (R)

⇔ ε :=
w (R)− w (L)

p (L)− p (R)
.

Step 2 Find an optimal solution B(ε) for the parameter ε.

Step 3 If

fε
(
B(ε)

)
= fε (L) = fε (R) , (2.13)

set T := [ε] and P = [ ] and branch no further.

Otherwise, B(ε) is a new penalty alternative which differs from both L
and R. Thus we set m := m+ 1 and branch:

a) Compute all penalty alternatives PL and all threshold parameters
TL in the left interval (εL, ε). Hence, go to Step 1 with

L := L, R := B(ε) and εL := εL, εR := ε .

b) Compute all penalty alternatives PR and all threshold parameters
TR in the right interval (ε, εR). Hence, go to Step 1 with

L := B(ε), R := R and εL := ε, εR := εR .

Afterwards set P :=
[
PL, B(ε),PR

]
and T := [TL, TR].

After the branching we set P :=
[
B(0),P , B(∞)

]
.

The slightly informal notation P :=
[
PL, B(ε),PR

]
means, that we merge the three or-

dered sets of penalty alternatives PL, B(ε), and PR successively. In doing so we simply
leave out empty sets.

We call ε the potential threshold parameter between L and R because we do not know
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2. The Penalty Method for General Sum-Type Problems

whether L and R are already neighboring alternatives or not. If condition (2.13) is
fulfilled, then ε really is a threshold parameter. That is why we store ε in the set of
threshold parameters T and stop further branching. Otherwise a new penalty alterna-
tive B(ε) was found and we have to continue branching. Thus in each iteration step
either a new threshold parameter or a new penalty alternative is found.

Hence, it is sufficient to solve 2#P − 1 problems of the type min
B∈S

w(B) + εp(B) if we

have a finite number of penalty alternatives #P <∞. Otherwise if there are infinitely
many penalty alternatives as in Example 2.3.9, the algorithm will never stop.

Remark 2.4.1
After completion of Algorithm 1 one has to do a post-processing step and exclude all
penalty alternatives in P which are degenerate. There is no way to leave this step out as
long as we cannot control which ε-penalty alternatives our basic optimization algorithm
computes.

For an optimization problem containing degenerate penalty alternatives, it is up to the
algorithm that computes one optimal solution to the punished problem

min
B∈S

w(B) + ε · p(B) , (2.14)

whether and if so which degenerate penalty alternatives are computed. That is why we
decided to leave out degenerate alternatives in Definition 2.3.6. For the computation of
all degenerate and nondegenerate alternatives, an algorithm is required that computes
all optimal solutions to the punished problem (2.14). In most cases this is very time-
consuming and, thus, not practicable.

We illustrate the algorithm in the following four page example.

Example 2.4.2
Consider the following shortest path problem.

3

13

21

8

15

38

1 3 3 3 1 3 6
s

a

b

c

d

e

f
t

s − b − c − d − e − f − t is the shortest path from s to t. From now on we use the
short name “sbcdeft” for this path. We get the following table containing the weights

44



2.4. Computation of the k Best Penalty Alternatives P (0), P (1), . . . , P (k−1)

and punished parts (for penalization with the canonical penalty vector). The columns
on the right give the punished values for selected penalty parameters. These values are
needed within the algorithm.

Path B w(B) p(B) f 1
3
(B) f 1

2
(B) f 2

3
(B) f 3

4
(B) f1(B) f 14

9
(B) f 11

6
(B)

“sbcdeft” 19 19 = 251
3

= 281
2

= 312
3

= 331
4

= 38 = 485
9

= 535
6

“sabcdeft” 20 16 = 251
3

= 28 = 302
3

= 32 = 36 = 448
9

= 491
3

“scdeft” 21 13 = 251
3

= 271
2

= 292
3

= 303
4

= 34 = 412
9

= 445
6

“sdeft” 23 10 = 261
3

= 28 = 292
3

= 301
2

= 33 = 385
9

= 411
3

“seft” 24 9 = 27 = 281
2

= 30 = 303
4

= 33 = 38 = 401
2

“sft” 27 6 = 29 = 30 = 31 = 311
2

= 33 = 361
3

= 38

“st” 38 0 = 38 = 38 = 38 = 38 = 38 = 38 = 38

In the following we present how Schwarz’s algorithm works for this example. Figure
2.4.1 on page 47 shows the branching tree of the algorithm which gives a good overview
on the interval division.

Initialization: The optimal solution is B(0) = “sbcdeft” and the ∞-penalty alter-
native is B(∞) = “st”. Since p

(
B(0)

)
= 19 6= 0 = p

(
B(∞)

)
holds, we can start the

branching. Thus we set m = 2 and

L := “sbcdeft” , εL := 0 ,
R := “st” , εR :=∞

and go to Step 1.

In the first iteration we compute

ε =
w (R)− w (L)

p (L)− p (R)
=
w (“st”)− w (“sbcdeft”)

p (“sbcdeft”)− p (“st”)
=

38− 19

19− 0
= 1 .

Now the algorithm computes a ε-alternative. In fact, there are three equally good
penalty alternatives, namely “sdeft”, “seft” and “sft”. Suppose the algorithm com-
putes B((1) = “seft”. Because of

fε
(
B(ε)

)
= fε (“seft”) = 33 6= 38 = fε

(
B(0)

)
= fε

(
B(∞)

)
we branch further and browse the intervals (0, 1) and (1,∞) at the next level.

In the left interval (0, 1) we compute the next potential threshold parameter by

ε =
w (R)− w (L)

p (L)− p (R)
=
w (“seft”)− w (“sbcdeft”)

p (“sbcdeft”)− p (“seft”)
=

24− 19

19− 9
=

1

2

and the corresponding penalty alternative B( 1
2) = “scdeft”. Again we continue branch-

ing since

fε
(
B(ε)

)
= fε (“scdeft”) = 27.5 6= 28.5 = fε (“sbcdeft”) = fε (“seft”)
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2. The Penalty Method for General Sum-Type Problems

holds. This time we have to cut the interval (0, 1) into the two halves
(
0, 1

2

)
and

(
1
2
, 1
)
.

The potential threshold parameter in the left interval
(
0, 1

2

)
with L = “sbcdeft” and

R = “scdeft” is

ε =
w (R)− w (L)

p (L)− p (R)
=
w (“scdeft”)− w (“sbcdeft”)

p (“sbcdeft”)− p (“scdeft”)
=

21− 19

19− 13
=

1

3
.

Again we have three equally best shortest pathes, namely “sbcdeft”, “sabcdeft”, and

“scdeft”. Suppose the algorithm computes B( 1
3) = “sabcdeft”. Even though this is a

penalty alternative which differs from both L and R we stop further branching since the
stop criterion (2.13)

fε (“sabcdeft”) = fε (“sbcdeft”) = fε (“scdeft”) ≈ 25.3

is fulfilled. This means that ε is a threshold parameter. Hence, we stop here and return

T := [ε] =
[

1
3

]
and P = [ ]. Note that since B( 1

3) = “sabcdeft” differs from both L and
R, it is a degenerate penalty alternative.

One level higher we still have to search through the right interval
(

1
2
, 1
)
. This provides

PR = [“sdeft”] and TR =
[

2
3
, 1
]

(cf. Figure 2.4.1 on page 47). With PL = [ ] and
TL =

[
1
3

]
we set

P :=
[
PL, B(ε),PR

]
= [“scdeft”︸ ︷︷ ︸

B(ε)

, “sdeft”︸ ︷︷ ︸
PR

] ,

T := [TL, TR] =
[ 1

3︸︷︷︸
TL

,
2

3
, 1︸︷︷︸
TR

]
.

These two ordered sets are returned to the higher starting level. With PR = [“sft”]
and TR =

[
1, 11

6

]
(again cf. Figure 2.4.1 on page 47) we set

P :=
[
PL, B(ε),PR

]
= [“scdeft”, “sdeft”︸ ︷︷ ︸

PL

, “seft”︸ ︷︷ ︸
B(ε)

, “sft”︸ ︷︷ ︸
PR

] ,

T := [TL, TR] =
[ 1

3
,
2

3
, 1︸ ︷︷ ︸

TL

, 1,
11

6︸ ︷︷ ︸
TR

]
.

Therewith we finished the branching part of the algorithm.

While the set of threshold parameters is already complete, we still have to insert B(0)

and B(∞) to the ordered set of penalty alternatives. Thus we set

P :=
[
B(0),P , B(∞)

]
= [“sbcdeft”︸ ︷︷ ︸

B(0)

, “scdeft”, “sdeft”, “seft”, “sft”︸ ︷︷ ︸
P

, “st”︸︷︷︸
B(∞)

] ,

and

T =
[1

3
,
2

3
, 1, 1,

11

6

]
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stays unchanged.

It is striking that T consists of two identical threshold parameters: the threshold pa-
rameter 1 is included twice. This means that the ordered set P contains a degenerate
penalty alternative. Thus, we have to do a post-processing step as mentioned in Re-
mark 2.4.1 in order to exclude the degenerate penalty alternatives. This step is quite
easy. One only has to go through the threshold parameters and filter out the penalty
alternative which is between the two identical threshold parameters.

� “sbcdeft” is optimal in the interval
[
0, 1

3

]
.

� “scdeft”is optimal in the interval
[

1
3
, 2

3

]
.

� “sdeft” is optimal in the interval
[

2
3
, 1
]
.

� “seft” is optimal in the interval [1, 1].

� “sft” is optimal in the interval
[
1, 11

6

]
.

� “st” is optimal in the interval
[

11
6
,∞
]
.

Hence, we exclude the degenerate penalty alternative “seft”. Therewith we get the final
ordered set P containing all penalty alternatives and the ordered set T containing all

ε = 1εL = 0 εR =∞

B(ε) = “seft”
w = 24, p = 9

L = “sbcdeft”
w = 19, p = 19

R = “st”
w = 38, p = 0

1
20 1

PL = [“scdeft”, “sdeft”]

TL =
[
1
3 ,

2
3 , 1
]

“scdeft”
w = 21, p = 13

14
91 ∞

B(ε) = “sft”
w = 27, p = 6

PR = [“sft”]

TR =
[
1, 116

]

1
30

1
2

PL = [ ]

TL =
[
1
3

]

ε1

3
4

1
2 1

B(ε) = “sdeft”
w = 23, p = 10

PR = [“sdeft”]

TR =
[
2
3 , 1
]

1
14
9

PL = [ ]

TL = [1]

ε4

11
6

14
9 ∞

ε5

PR = [ ]

TR =
[
11
6

]

2
3

1
2

3
4

PL = [ ]

TL =
[
2
3

]

ε2

1
3
4

ε3

PR = [ ]

TR = [1]

Figure 2.4.1: Branching tree of Schwarz’s algorithm for Example 2.4.2.
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threshold parameters.

P = [“sbcdeft”, “scdeft”, “sdeft”, “sft”, “st”] T =

[
1

3
,
2

3
, 1,

11

6

]
This concludes this big introductory Example 2.4.2.

In the next sections we present some modifications of this basic algorithm in order
to improve the running time and numerical stability for the computation of the m
best penalty alternatives. Furthermore we present some experimental results on how
much computation time one can save by applying the proposed modifications. The
considered optimization problems and the rules for the generation of random instances
are introduced in detail in the following Chapter 3 starting on page 67.

2.4.2 Left-First Traversal

Note that we need only the three best penalty alternatives P (0), P (1), and P (2) if we
want to compute the Cordel frequency. Hence it is not necessary to compute all penalty
alternatives, as done by the basic algorithm of Schwarz. That is why we suggest to shift
the search more to the left side. This means that we first continue further branching
in the left interval (εL, ε) instead of the right interval (ε, εR).

Let k be the number of penalty alternatives that we want to compute. For example
we set k = 3 if we are only interested in P (0), P (1), and P (2). If the left interval (εL, ε)
already provides enough penalty alternatives

|PL| ≥ k − 2

we can stop the branching without examination of the right interval. Please keep in
mind that PL does not contain the optimal solution P (0) and the current solution B(ε).
Thus k − 2 new alternative solutions are sufficient.

Example 2.4.3
Applying left-first traversal in Example 2.4.2 with k = 3, the algorithm stops at the
first level after the examination of the left interval (0, 1). This interval provides

PL = [“scdeft”, “sdeft”] with |PL| = 2 ≥ k − 2 .

Hence it is not necessary to investigate the right interval (1,∞), too.

In case k = 4 the algorithm would also stop at the first level. But[
B(0),PL, B(ε)

]
= [“sbcdeft”, “scdeft”, “sdeft”, “seft”]

includes the degenerate penalty alternative “seft”. Thus, after excluding “seft” out,[
B(0),PL, B(ε)

]
does not contain the required k = 4 alternatives any longer.
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However, in this case the degenerate alternative “seft” can only be detected if also
the neighboring penalty alternative “sft” is computed. Otherwise it is not possible to
clearly recognize “seft” as degenerate penalty alternative.

We saw in the last example that problems with degenerate penalty alternatives can
arise. Concretely, two kinds of problems may arise.

1. It is very rare that you have to compute a further penalty alternative, in or-
der to decide, whether the last calculated alternative is degenerate or not (cf.
Example 2.4.3 above for k = 4).

2. Sometimes, excluding degenerate alternatives reduces the number of computed
penalty alternatives to such an extent that the remaining number of penalty is
smaller than the predetermined number k.

In both cases one has to compute at least one more penalty alternative by investigation
of the remaining right interval. In order to prevent such problems, we always try
to compute one penalty alternative more than required. This gives us the following
algorithm.

Algorithm 2 (Algorithm of Schwarz Combined with Left-First-Traversal
for Computing the k Best Penalty Alternatives)

Initialization: Compute B(0) and B(∞).
If p

(
B(0)

)
= p

(
B(∞)

)
, then the solution B(0) is optimal for all ε ≥ 0. Hence, we

set P =
{
B(0)

}
and T = [ ] stop.

Otherwise set

m := 2 , L := B(0) , εL := 0 , R := B(∞) , εR :=∞

and canceled := false and go to Step 1.

Branching:

Step 1 Compute the potential threshold parameter

ε :=
w (R)− w (L)

p (L)− p (R)

between L and R.

Step 2 Find an optimal solution B(ε) for the parameter ε.

Step 3 If

fε
(
B(ε)

)
= fε (L) = fε (R) , (2.15)

set T := [ε] and P = [ ] and branch no further.
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Otherwise, B(ε) is a new penalty alternative which differs from both L
and R. Thus we set m := m+ 1 and branch:

a) Compute all penalty alternatives PL and all threshold parameters
TL in the left interval (εL, ε). Hence, go to Step 1 with

L := L, R := B(ε) and εL := εL, εR := ε .

If |Pl| ≥ k − 1 holds, then we set

PR := [ ] , TR := [ ] , canceled:= true

and stop further branching without investigation of the right inter-
val. Otherwise, if |Pl| < k − 1 holds, then we go to Step 3b.

b) Compute all penalty alternatives PR and all threshold parameters
TR in the right interval (ε, εR). Hence, go to Step 1 with

L := B(ε), R := R and εL := ε, εR := εR .

Afterwards set P :=
[
PL, B(ε),PR

]
and T := [TL, TR].

After the branching we set

P :=

{[
B(0),P , B(∞)

]
, if canceled = false ,[

B(0),P
]
, if canceled = true

and exclude all penalty alternatives which are obviously degenerate. If after-
wards |P| < k holds and if the branching was stopped (canceled = true),
then the remaining right interval has to be investigated, too. Hence, for
P =

[
B(0), P (1), . . . , P (m)

]
and T = [ε1, . . . , εm] with m < k − 1 we set

k := k −m and canceled:= false

and go to Step 1 with

L := P (m), R := B(∞) and εL := εm, εR :=∞ .

Despite the problems with degenerate alternatives, application of left-first traversal can
save a lot of computing time as the following experimental results show.

Experimental Results for the Shortest Path Problem in Grid Graphs

We analyzed the computation times for the computation of the penalty alternatives
in shortest path problems in directed grid graphs (detailed information in Section 3.1
starting on page 67).

50



2.4. Computation of the k Best Penalty Alternatives P (0), P (1), . . . , P (k−1)

Figure 2.4.2 (a) shows the reduction of the number of computed penalty alternatives
by applying left-first traversal for k = 3. For left-first traversal the average number
converges to approximately 12 computed penalty alternatives. In contrast, the num-
ber of computed penalty alternatives for the computation of all penalty alternatives
(k = ∞) does not seem to converge. This is because the larger the graphs are, the
more penalty alternatives exist.

Hence, the reduction of running time increases for bigger instances. This can be seen
in Figure 2.4.2 (b). The saving in runtime goes up to 72% for 500× 500 grids and will
be even larger for larger grids.

Experimental Results for Knapsack Problems

In Section 3.5 starting on page 82, b-bounded knapsack problems are introduced. For
b = 1 the common binary knapsack problem and for b = ∞ the unbounded knapsack
problem occurs.

Again we investigated how much running time could be saved by left-first traversal.
This is shown in Figure 2.4.3 (a). Except the case b =∞, the improvement by applying
left-first traversal is enormous and increasing for larger numbers of items.

In fact, the unbounded knapsack problem (b = ∞) is definitely an exception. For
all other considered optimization problems, the number of penalty alternatives is in-
creasing for bigger instances (cf. Figure 2.4.3 (b)). Only for the unbounded knapsack
problem this was not the case. There, the number of penalty alternatives is first in-
creasing until a maximal number of approximately 5.5 penalty alternatives is reached.
This is followed by a decrease.

There are two reasons for this curve shape. The first reason is that unbounded knap-
sack problems with many items include many dominated items. Thus, an unbounded
knapsack problem with n = 100 items might consist of only 5 non-dominated items.
Another reason is, that unbounded knapsack problems with many items are very likely
to contain one “super item” which has a very small weight and a very great usage (or
profit). In this case, the optimal solution consists almost entirely of this super item.
Consequently, in this case there are only few penalty alternatives.

The fact, that there are only few penalty alternatives at all in case of the unbounded
knapsack problem, is also why left-first traversal cannot speed up the computation.

Overall, it has been shown, that left-first traversal is a very powerful tool for speeding
up computation time. The time saving potential is enormous!
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3.1 starting on page 67).
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Figure 2.4.3: Binary (b = 1), 10-bounded, 20-bounded and unbounded (b = ∞) knapsack
problem (detailed information in Section 3.5 starting on page 82).
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2.4.3 Computation of B(∞)

In most cases it is really easy to compute B(∞) but sometimes it can be difficult or at
least time-consuming.

Computation of B(∞) for Knapsack Problems

It is really easy to compute B(∞) for the binary, bounded or unbounded knapsack
problem, because for B(0) 6= 0 only two cases can happen. If B(0) uses every item, then
B(∞) = 0 is the ∞-alternative. Otherwise, if B(0) does not use every item, always a
disjoint solution to B(0) exists. In this case we just need to exclude all items used in
B(0) and solve the remaining knapsack problem.

Computation of B(∞) for the Shortest Path Problem

The well-known algorithm of Dijkstra [Dij 1959] computes an optimal solution to
the shortest path problem. This algorithm can be modified easily so that the ∞-
alternative instead of the optimal solution is computed. Therefor the former Dijkstra
algorithm, that only tries to minimizes one objective function, has to be changed to a
bi-objective version which minimizes lex min

B∈S
(p(B), w(B)).

Computation of B(∞) for the Minimum Spanning Tree Problem

In analogy to the bi-objective Dijkstra algorithm, that we introduced above for the
shortest path problem, it is possible to implement a bi-objective Prim algorithm, for
example.

General Computation of B(∞) for Linear Optimization Problems

For linear optimization problems it is possible to compute B(∞) with the help of the
simplex algorithm. For a given linear optimization problem min

B∈S
w′B, also

min
B∈S

p′B (2.16)

is a linear optimization problem. Thus we can apply the simplex algorithm to (2.16).
Now only two cases can happen. Either (2.16) has a uniquely determined solution
which is then B(∞), or (2.16) has infinitely many optimal solutions. In the second
case the set of all optimal solutions is a face of the polyhedron of feasible solutions.
Then B(∞) is a solution on this face with minimal value w(B). Hence, one only has to
determine the weights of each edge of this face and choose the best one. This is then
B(∞). Unfortunately, this can be time-consuming.

2.4.4 Starting with a Given Upper Bound ε̂

As we saw in the previous Section 2.4.3, the computation of B(∞) is easy in most
cases. But sometimes this task can be time-consuming although the computation of
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an ε-penalty alternative for each 0 ≤ ε <∞ can be done fast.

Not for that reason alone, one can save computation time by starting with R := B(ε̂)

for some given ε̂. However, one must think of a good ε̂ if one wants to take advantage
of this approach. Furthermore one has to search through the interval (ε̂,∞), too, if
there are not enough alternatives in the left interval (0, ε̂).

The following observation is easily checked.

Lemma 2.4.4
Initializing Algorithm 1 with εR := ε̂ and R := B(ε̂) instead of εR :=∞ and R := B(∞)

provides all penalty alternatives P and all threshold parameters T in the interval [0, ε̂].

Hence, ε̂ > εk−1 ensures that the penalty alternatives P (0), P (1), . . . , P (k−1) will be found.
Consequently, the right interval (ε̂,∞) has not to be searched for ε̂ > εk−1.

Example 2.4.5
Initializing the algorithm of Schwarz for Example 2.4.2 with ε̂ = 1

2
< 2

3
= ε2 and

k = 3 would provide only two of the penalty alternatives, namely the optimal solution
“sbcdeft” and the first penalty alternative “scdeft”. Hence, we have to examine the
interval (0.5,∞), too.
Another possibility is to restart the procedure with a larger ε̂. For example ε̂ = 0.7 >
2
3

= ε2 would work here.

A Simple Learning Approach for the Computation of a Good ε̂

Lemma 2.4.4 said that

ε̂ > εk−1 (2.17)

ensures that the k best penalty alternatives P (0), P (1), . . . , P (k−1) are found. But still
the question arises how to choose ε̂ such that (2.17) is fulfilled, since we do not know
εk−1 without starting Schwarz’s algorithm. Of course one could choose ε̂ very large in
order to assure (2.17), but if you want to improve the running time it would be good
to choose ε̂ as small as possible (but still big enough). That is why we present two
simple learning approaches in order to find out what a good ε̂ is.

Therefore we preset a probability α1 ∈ [0, 1], for example α1 = 0.95 and try to deter-
mine ε̂ such that

P (X < ε̂) = α1 (2.18)

holds, where the random variable X is the (k − 1)th threshold parameter εk−1 in a
random instance with at least k − 1 threshold parameters. We use the notation X
instead of the longer notation Xk−1 for better readability. By definition of ε̂ through
(2.18), ε̂ is the α1-quantile of X. Hence, starting with ε̂ as upper bound will be
successful with probability α1.
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Since we do not know the cumulative distribution function of the (k − 1)th threshold
parameter X, we cannot compute the α1-quantile exactly. But what we can do is to
estimate the α1-quantile from instances, where we already computed the value of X.
Therefor we propose a simple estimator.

Let x1, x2, . . . , xm be the values of the (k − 1)th threshold parameter in m random
instances with at least k−1 threshold parameters. Thus x1, x2, . . . , xm are the random
variates of X in m independent random experiments. Then we define quantiles qk−1(α)
for α ∈ [0, 1] as in Matlab’s quantile function [Matlab 2008].

1. Let x1:m ≤ x2:m ≤ · · · ≤ xm:m be the values x1, x2, . . . , xm sorted increasingly.
These values are taken as the 0.5

m
, 1.5
m
, . . . , m−0.5

m
quantiles.

qk−1

(
0.5

m

)
:= x1:m, qk−1

(
1.5

m

)
:= x2:m, . . . , qk−1

(
m− 0.5

m

)
:= xm:m

2. For i−0.5
m

< α < i+0.5
m

(1 ≤ i < m) the quantile is computed with linear interpo-
lation. Hence, we define

qk−1(α) : = xi:m +

(
α− i− 0.5

m

)
xi+1:m − xi:m
i+0.5
m
− i−0.5

m

= xi:m +

(
α− i− 0.5

m

)
(xi+1:m − xi:m)m

for i−0.5
m

< α < i+0.5
m

and 1 ≤ i < m.

3. Furthermore, we set

qk−1(α) := x1:m for 0 ≤ α ≤ 0.5

m
,

qk−1(α) := xm:m for
m− 0.5

m
≤ α ≤ 1 .

Example 2.4.6
Let k := 3. Suppose that in ten random instances the following values for the second
threshold parameter ε2 = εk−1 occurred.

� In two of the ten random instances, only two penalty alternatives (namely B(0)

and B(∞)) existed.

� In the remaining eight random instances there were at least two threshold param-
eters. The following sorted random variates of X (values of the second threshold
parameter) occurred.

x1:8 = 0.10 x2:8 = 0.18 x3:8 = 0.20 x4:8 = 0.25
x5:8 = 0.25 x6:8 = 0.37 x7:8 = 0.45 x8:8 = 0.90
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This provides the following quantiles.

q2

(
0.5

8

)
= q2(0.0625) = 0.10 q2

(
1.5

8

)
= q2(0.1875) = 0.18

q2

(
2.5

8

)
= q2(0.3125) = 0.20 q2

(
3.5

8

)
= q2(0.4375) = 0.25

q2

(
4.5

8

)
= q2(0.5625) = 0.26 q2

(
5.5

8

)
= q2(0.6875) = 0.37

q2

(
6.5

8

)
= q2(0.8125) = 0.45 q2

(
7.5

8

)
= q2(0.9375) = 0.90

With linear interpolation and extra treatment of the margins the following quantile
function q2(α) for 0 ≤ α ≤ 1 arises.

α

q2 (α)

0.5
8

1.5
8

2.5
8

3.5
8

4.5
8

5.5
8

6.5
8

7.5
8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Since 7.5
8
< 0.95 holds, the 0.95-quantile of X is xm:m = 0.9 and because of 6.5

8
< 0.9 <

7.5
8

the 0.9-quantile of X is computed by linear interpolation. It arises

q2(0.9) = x7:8 +

(
0.9− 6.5

8

)
(x8:8 − x7:8) · 8

= 0.45 + 0.0875 · 0.45 · 8 = 0.765

as 0.9-quantile of X.

Thereby we defined a simple estimator for α-quantiles of X (α ∈ [0, 1]). Of course
the estimate is better for higher m. Therewith we can give our first simple learning
algorithm.

Algorithm 3 (First Simple Learning Algorithm for the Computation of
a Good ε̂)

Initialization: We start the algorithm with an arbitrary ε̂ and a given probability
α1 ∈ [0, 1]. This could be for example ε̂ := ∞ or a smaller penalty parameter as
well. Set Ek−1 := ∅ and start the examination of random instances.
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Step 1 Generate a random instance of the considered optimization problem type.

Step 2 Compute the k best penalty alternatives P (0), P (1), . . . , P (k−1) and the
corresponding k − 1 smallest threshold parameters ε1 < . . . < εk−1 with
Algorithm 1 and ε̂ as upper bound. If necessary, the right interval [ε̂,∞]
must be searched through, too.

Step 3 If the instance has at least k penalty alternatives, then we insert the value
of the (k − 1)th threshold parameter into the set Ek−1 := Ek−1 ∪ {εk−1}
and update ε̂. Therefor ε̂ is set to the α1-quantile of the values in Ek−1.

Otherwise, if the instance has less than k penalty alternatives, nothing
has to be done in Step 3.

Repeat Step 1 - Step 3 as many times as desired.

In Step 2 we have to search through the right interval [ε̂,∞], too, if ε̂ is to small. This
can be very time-consuming. That is why we want to preset a second, larger bound ε̂2

which shall be used when the bound we tried first was to small. In this way we want
to save computation time.

Hence, we preset two values 0 < α1 < α2 ≤ 1 and try to compute the α1- and α2-
quantiles of the (k − 1)th threshold parameter εk−1. Thus ε̂1 is an estimation of the
α1-quantile and ε̂2 is an estimation of the α2-quantile of X.

Algorithm 4 (Second Simple Learning Algorithm for the Computation
of a Good ε̂)

Initialization: We start the algorithm with two arbitrary bounds ε̂1 ≤ ε̂2 and
two given probabilities 0 < α1 < α2 ≤ 1. This could be for example ε̂1 = ε̂2 := ∞
or smaller penalty parameters as well. Set Ek−1 := ∅ and start the examination of
random instances.

Step 1 Generate a random instance of the considered optimization problem type.

Step 2 Try to compute the k best penalty alternatives P (0), P (1), . . . , P (k−1) and
the corresponding k − 1 smallest threshold parameters ε1 < . . . < εk−1

with Algorithm 1 in the interval [0, ε̂1]. If this search does not provide
the desired k penalty alternatives, then start the algorithm again in the
interval [ε̂1, ε̂2]. If we still do not find enough penalty alternatives there,
then the last interval [ε̂2,∞] has to be searched through, too.

Step 3 If the instance has at least k penalty alternatives, then we insert the value
of the (k − 1)th threshold parameter into the set Ek−1 := Ek−1 ∪ {εk−1}
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and update ε̂1 and ε̂2. Therefore ε̂1 is set to the α1-quantile and ε̂2 is
set to the α2-quantile of the values in Ek−1.

Otherwise, if the instance has less than k penalty alternatives, nothing
has to be done in Step 3.

Repeat Step 1 - Step 3 as many times as desired.

The remaining question is, which quantiles α1 and α2 provide good computing times.

We spent some time analyzing the time saving for different quantiles (α1, α2) for the
binary and bounded knapsack problem (with bound b = 10). Figures 2.4.4 (a) and (b)
show the running time improvements for instances with 50 items. We tested α1 and α2

with an increment of 0.05. In both cases the quantiles α1 = 0.75 and α2 = 0.95 provide
the largest running time improvements for the considered 1, 000 random instances. It
turns out, that the running time improvement increases as α2 increases, as long as α2

is not too big (in this case as long as α2 < 1). In the framed areas (0.5 ≤ α1 ≤ 0.95
and 0.55 ≤ α2 ≤ 1) we also did a finer analysis with an increment of 0.01 for α1 and
α2. These results are shown in Figures 2.4.5 (a) and (b).

Besides the shown results for instances with 50 items and bounds b ∈ {1, 10} we also
tried different (α1, α2) for n ∈ {5, 10, 25, 50, 75, 100} and b ∈ {1, 10, 20}. As a result
we recommend the empirical values

α1 = 0.66 and α2 = 0.96 .

Experimental Results for Knapsack Problems

Figure 2.4.6 on page 62 shows the running time improvements achieved by the learn-
ing approach from Algorithm 4 on page 58 with the empirically determined quantiles
α1 = 0.66 and α2 = 0.96. For the b-bounded knapsack problem with b < ∞ running
time improvements of up to 23% were measured.

But for the unbounded knapsack problem (b = ∞) the learning approach can lead
to higher computation times! This is due the fact, that left-first traversal for the
unbounded knapsack problem does not leave much room for more running time im-
provements as the previous Figure 2.4.3 (a) on page 53 showed. For example, if
left-first traversal computes 5 instead of the searched for 4 penalty alternatives, then
an optimal starting interval ceiling ε̂ can save at most further 20% of running time.
Thus, in the case of the unbounded knapsack problem, learning of an optimal ε̂ hardly
speeds up the running time. In fact, this learning approach might even lead to bigger
computations times.

59



2. The Penalty Method for General Sum-Type Problems

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

αα1

αα 2

0.8

0.9

1.0

1.1

1.2

(a) Binary knapsack problem (b = 1) with n = 50 items.

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

αα1

αα 2

0.8

0.9

1.0

1.1

1.2

(b) Bounded knapsack problem with n = 50 items and bound b = 10.

Figure 2.4.4: Running time improvements with the simple learning approach from Algo-
rithm 4 for different quantiles 0 < α1 < α2 < 1 with an increment of
0.05.
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Figure 2.4.6: b-bounded knapsack problem: Saving achieved by the Learning Approach
with α1 = 0.44 and α2 = 0.96.

Experimental Results for the Shortest Path Problem in Real Road
Networks

In order to get an idea if the learning approach could speed up the computations we
again considered the number of alternatives that left-first traversal computed. If this
number is near the predetermined number k, then it is not necessary to compute a
good ε̂. In that case starting with an upper bound ε̂ could even increase the running
time as we saw in case of the unbounded knapsack problem.

Thus, we counted the average number of computed penalty alternatives for the shortest
path problem in real road networks (cf. Section 3.3 starting on page 74). Figure 2.4.7
shows this number for each US-State. We see that there are two outstanding road
maps – Alaska (AK) with averaged 4 and Hawaii (HI) with 2 computed alternatives.
This is due to the fractured road networks that we find there. In Hawaii this is because
of the islands and in Alaska we have many cities that are not served by road, sea or
river but reachable by train. Thus planning a car route with penalty alternatives will
never deliver many alternatives in such regions.

But, the number of computed penalty alternatives for the remaining US-States is also
not very big. Hence, we could try to apply the learning approach here, but it will
probably reduce the running time only a little.
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Figure 2.4.7: Average number of computed penalty alternatives with left-first traversal for
k = 3 and each US-State.

2.4.5 Using the Solutions L or R as Initial Solution

A couple of optimization problems are solved with branch and bound techniques or
other algorithms which use initial solutions. Some examples for problems solved by
branch and bound algorithms are:

� Knapsack problem

� Integer and nonlinear programming

� Traveling salesman problem

� Cutting stock problem

� Quadratic assignment problem

� Maxiumum satisfiability problem.

Observe that it makes no differences whether L or R is used as initial solution, since
both solutions have the same functional value in the optimization problem

min
B∈S

w(B) + εp(B) .

Experimental Results for Knapsack Problems

Since we used branch and bound techniques to solve our knapsack problems, it was
possible to use L or R as initial solution. Figure 2.4.8 shows that an initial solution
indeed can improve the running time, but not so heavy. The biggest improvement is
obtained for b =∞ where we can save up to 15% running time.
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Figure 2.4.8: b-bounded knapsack problem: Saving achieved by using L (or R) as initial
solution.

2.4.6 A More Stable Way to Evaluate (2.13)

An important part of Algorithm 1 on page 42 is the decision on whether ε is a new
threshold parameter or not. In the algorithm the criterion for decision is whether
equation (2.13)

fε
(
B(ε)

)
= fε (L) = fε (R) (2.13)

holds or not. Unfortunately, this is not always easy to decide because of numerical
instabilities. In fact, it is not advisable to rely on the numerical established values
fε
(
B(ε)

)
, fε (L) , and fε (R).

If B(ε) = L or B(ε) = R holds, which could be decided easily for optimization problems
with integer solutions, then ε is a threshold parameter and (2.13) is fulfilled obviously.
Otherwise, for B(ε) 6= L and B(ε) 6= R, we still do not know whether ε is a threshold
parameter or not, unfortunately. So we have to look for another criterion.

By the definition of B(ε) the inequality

fε
(
B(ε)

)
≤ fε (B) holds for all B ∈ S .

Thus negation of criterion (2.13) is equivalent to

fε
(
B(ε)

)
< fε (L) = fε (R) .

If one uses L or R as initial solution (as described in the previous Section 2.4.5), then
the decision whether B(ε) is better than L and R can be left to the solution algorithm
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that computes the ε-alternative. This algorithm should now return not only B(ε) but
also a boolean improved that indicates whether a better solution than the initial so-
lution (L or R) was found or not. Of course computational accuracy is still a matter
within this solving procedure. Thus it is still recommended to check that B(ε) indeed
differs from L and R for integer programs.

Furthermore, from Theorem 2.3.10’ we know that for a new penalty alternative B(ε)

p(L) < p
(
B(ε)

)
< p(R)

and

w(L) ≤ w
(
B(ε)

)
< w(R)

hold. Thereby equality of w(L) and w
(
B(ε)

)
is only possible for L = B(0).

Summarizing, we get the following lemma which shows three properties which can be
easily verified. For programmers it is strongly recommended to check each property
in order to make a reliable decision whether B(ε) is a new penalty alternative or not.
This following lemma is basically just a compilation of earlier results. (i) is obviously
clear and (ii) and (iii) are parts of Theorem 2.3.10’.

Lemma 2.4.7
Let B(ε) be a newly found penalty alternative that is to say

fε
(
B(ε)

)
< fε (L) = fε (R) . (2.19)

Then the following three statements hold.

(i) B(ε) 6= L and B(ε) 6= R.

(ii) p (L) < p
(
B(ε)

)
< p (R).

(iii) w (L) ≤ w
(
B(ε)

)
< w (R). Equality of w (L) and w

(
B(ε)

)
is only possible for

L = B(0).

Still, if (i), (ii), and (iii) are fulfilled one cannot be sure that (2.19) holds, without
consideration of fε

(
B(ε)

)
, fε (L) , and fε (R). That is why we also make suggestions

how to compute these three values. Since ε is internally saved as a rounded value, it is
recommended to insert the exact representation of ε

ε =
w(R)− w(L)

p(L)− p(R)
(2.20)

into (2.19). We transform

fε
(
B(ε)

)
= fε (L)

⇔ w
(
B(ε)

)
+ ε · p

(
B(ε)

)
= w (L) + ε · p (L)

(2.20)⇔ w
(
B(ε)

)
+
w(R)− w(L)

p(L)− p(R)
· p
(
B(ε)

)
= w (L) +

w(R)− w(L)

p(L)− p(R)
· p (L)

⇔
(
w
(
B(ε)

)
− w(L)

)
· (p(L)− p(R)) = (w(R)− w(L)) ·

(
p(L)− p

(
B(ε)

))
.

(2.21)

For integer vectors w, p ∈ Zn the final equation (2.21) can be verified numerically stable
as long as the factors in (2.21) are not too large.
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2. The Penalty Method for General Sum-Type Problems

2.4.7 Summary of the Experimental Results

The previous experimental results on the running times showed that left-first traversal
is the most powerful approach in order to reduce the computation time. In particu-
lar, left-first traversal will never increase the runtime. In case of the simple learning
approach for learning appropriate initial bounds ε̂, even enlargements of the running
times were observed. Thus, it is recommended to think about whether this approach
might be useful for the given optimization problem. Most often the learning approach
really reduces the running time but the observed running time improvements were not
as big as for left-first traversal. The same phenomenon occurred for the usage of L
(or R) as initial solutions. Here, running time improvements occurred, but again only
minor improvements arise.

Thus, we recommend to always implement left-first traversal. Furthermore, for op-
timization problems solved by branch and bound algorithms L or R should be used
as initial solution. But we suggest to implement the learning approach only, if the
distribution of the (k − 1)th threshold parameter εk−1 is of interest, too. Otherwise
the effort is not worth it.
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Chapter 3

Experimentally Observed
Cordel Frequencies
under the Penalty Selection Rule

In this chapter we present experimentally observed Cordel frequencies for shortest
path problems (Sections 3.1, 3.2, and 3.3), the minimum spanning tree problem (Section
3.4) and for different knapsack problems (Section 3.5). Furthermore, we try to design
instances where the penalty alternatives P (0), P (1), . . . , P (k) for penalization with the
canonical penalty vector fulfill

w
(
P (i)

)
− w

(
P (i−1)

)
= di for i = 1, . . . , k

with a given difference vector d = (d1, . . . , dk) ∈ Rk
>0. Obviously, the Cordel frequency

cannot be 0% or 100%, if there exist instances for any difference vector d ∈ Rk
>0. That is

why we tried to give specifications for the construction of instances to a given difference
vector d. Unfortunately, we were not able to do so for each of the considered problems
but for some types of optimization problems our investigations were successful.

3.1 The Shortest Path Problem in Grid Graphs

We start with the shortest path problem in directed grid graphs.

Definition 3.1.1 (Directed Grid Graph)
A weighted directed m× n grid graph with height m and width n is a graph
G = (V,E) with

V ={vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and

E = {(vi,j, vi+1,j) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n} (vertical edges)
∪ {(vi,j, vi,j+1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1} (horizontal edges)

and a weight function w : E → R. Furthermore we have two special vertices s = v1,1

and t = vm,n which are the starting and the target node.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

Thus the graph can be illustrated as a rectangular m×n grid, where each intersection
point represents a vertex of G. Furthermore from each vertex there exist edges to its
right and lower neighbors, if such neighbors exist. Figure 3.1.1 shows a 3×4 grid graph
as an example.
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s = v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 t = v3,4

width n = 4

height m = 3

Figure 3.1.1: Example for a weighted directed 3× 4 grid graph.

Grid graphs have one main advantage. By the use of dynamic programming it is
possible to compute the shortest s− t path in O (|V |). This procedure is substantially
faster than Dijkstra’s algorithm [Dij 1959]. Note that the running time of Dijkstra’s
algorithm with Fibonacci heaps is O (|E|+ |V | log |V |).

3.1.1 Construction of Grids for the Shortest Path Problem
with Given Differences d and Threshold Parameters ε

First, we show that for each difference vector d = (d1, . . . , dk) ∈ Rk
>0 and for each

threshold parameter vector ε = (ε1, . . . , εk) with 0 < ε1 < . . . < εk exists a directed
2× (k + 1) grid graph, whose penalty-alternatives P (0), P (1), . . . , P (k) fulfill

w
(
P (i)

)
− w

(
P (i−1)

)
= di for i = 1, . . . , k

and have the threshold parameters ε1, . . . , εk. It is therefore clear that the Cordel fre-
quency cannot be 0 or 1.

To prove this proposition we give an algorithm that constructs an appropriate 2×(k+1)
grid graph. A 2× (k + 1) grid has the structure of a horizontal ladder and each s− t
path can uniquely be described by its vertical edge.
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3.1. The Shortest Path Problem in Grid Graphs

Definition 3.1.2 (Ladder Graph, Ladder Path, Ladder Spoke)
Regarding its ladder shape a 2× n grid is called a ladder graph of width n. For a
ladder graph of witdh n we denote by Li the s− t path

Li := {s = v1,1 − v1,2 − . . .− v1,i︸ ︷︷ ︸
straightly to the right

− v2,i − v2,i+1 − . . .− v2,n︸ ︷︷ ︸
straightly to the right

= t}

which turns downwards in vertex v1,i. Li is called the i-th ladder path.
Furthermore the i-th vertical edge (v1,i, v2,i) is called the i-th ladder spoke.

The following picture shows the two ladder paths L2 (red) and L4 (blue) in a 2 × 5
grid.

v1,2 v1,4

L2

L4

s

t

Our idea is to construct a 2× (k+ 1) grid, such that the penalty alternative P (i) is the
ladder path Li+1. Thus P (0) should be the leftmost ladder path and P (k) should be the
rightmost ladder path.

Theorem 3.1.3 (Penalty Alternatives for Ladder Graphs)
Consider a given difference vector d ∈ Rk

>0, a given threshold parameter vector
ε = (ε1, . . . , εk) with

0 < ε1 < . . . < εk

and a ladder path of width k + 1 with the following weights as shown in Figure 3.1.2
on the next page.

1. The first ladder spoke should have weight 1 and the i-th ladder spoke (1 < i ≤
k + 1) should have weight 1 + d1 + · · ·+ di−1.

2. The vertical edges (v1,i, v1,i+1) and (v2,i, v2,i+1) should have weight d1
ε1
−1 for i = 1

and weight di
εi

for i = 2, . . . , k.

Then the following two statements hold:

1. The penalty alternatives B(0) = P (0), P (1), . . . , P (k) = B(∞) are the ladder paths
L1, . . . , Lk+1 with

P (i) = Li+1 for i = 0, . . . , k .

2. The penalty alternatives have the given weight differences d = (d1, . . . , dk) and
threshold parameters ε = (ε1, . . . , εk). This means that

di = w
(
P (i)

)
− w

(
P (i−1)

)
and εi =

w
(
P (i)

)
− w

(
P (i−1)

)
p (P (i−1))− p (P (i))

hold for i = 1, . . . , k.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

s

t

1 1 + d1 1 + d1 + d2 1 + d1 + d2 + d3 1 + d1 + . . .+ dk−1 1 + d1 + . . .+ dk

d1

ε1
− 1

d1

ε1
− 1

d2

ε2

d2

ε2

d3

ε3

d3

ε3

dk

εk

dk

εk

Figure 3.1.2: Construction scheme for a 2 × (k + 1) grid graph with penalty alterna-
tives P (0), . . . , P (k) with threshold parameters ε1, . . . , εk and differences di =
w
(
P (i)

)
− w

(
P (i−1)

)
for i = 1, . . . , k.

Proof. Since d > 0, the first ladder path L1 with length d1
ε1

+ . . .+ dk
εk

is a shortest s− t
path. Hence, for penalization with the canonical penalty vector and B(0) = L1, the
i-th ladder path Li (1 < i ≤ k + 1) has the weight

w (Li) =
k∑
j=1

dj
εj

+
i−1∑
j=1

dj

and the penalized part

p (Li) =
k∑
j=i

dj
εj
.

Thus, the ladder paths have the requested weight differences

w (Li+1)− w (Li) = di for i = 1, . . . , k .

With

p (Li)− p (Li+1) =
di
εi

follows

w (Li+1)− w (Li)

p (Li)− p (Li+1)
=
di
di
εi

= εi .

Since all s − t paths are ladder paths and the specified threshold parameters fulfill
0 ≤ ε1 < . . . < εk, the ladder paths L1, . . . , Lk are the penalty alternatives with the
requested weight differences d and threshold parameters ε. �

Remark 3.1.4
If only a difference vector d is given, the vector of threshold parameters ε can be freely
chosen with 0 < ε1 < . . . < εk, for example ε = (1, . . . , k). Otherwise, if only a vector
of threshold parameters is given, then d > 0 can be arbitrarily chosen, for example
d = (1, . . . , 1).

Consequently, the Cordel frequency for a random 2× n grid (n ≥ 3) cannot be 0 or 1.
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3.1. The Shortest Path Problem in Grid Graphs

3.1.2 Experimental Results for the Shortest Path Problem in
Grid Graphs

Before we present the experimentally observed Cordel frequencies, we explain how we
generated random instances.

Definition 3.1.5 (Random Instances for the Shortest Path Problem in Di-
rected Grid Graphs)
A random instance of height m > 2, width n > 2, and range g ∈ N is a di-
rected m×n grid with randomly uniformly distributed edge weights in the integer range
[1, 10g].

With the range parameter g we can control the range of edge weights. Huge values of
g imply quasi-continuous instances, whereas small values imply discrete instances with
many recurring edge weights.
The impact of the range parameter g on the Cordel frequencies was analyzed for every
studied optimization problem. In fact, g has usually only a small impact on the Cordel
frequency, as the following experimental results show. But some types of optimization
problems occurred, where g heavily influences the Cordel frequency.
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Figure 3.1.3: Experimentally observed Cordel frequencies P (d1 ≥ d2) for the shortest path
problem in quadratic n× n and in rectangular n× 2n grid graphs with range
parameter g = 3.

For the shortest path problem two types of grids were examined: quadratic n × n
grids and rectangular n × 2n grids. For each triple (m,n, g) at least 10, 000 random
instances were generated and analyzed. As an example, here, we show the results for
g = 3. The red circles in Figure 3.1.3 show the Cordel frequencies for the shortest path
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

problem in quadratic n×n grids. The blue crosses show the Cordel frequencies for
rectangular n × 2n grids. It turns out that both frequencies are nearly the same,
which is not surprising. While the Cordel frequencies for n ≤ 100 are approximately
between 20% and 30%, they seem to converge to approximately 32%−35% as n→∞.

For the sake of completeness, Figure J.1.1 (quadratic grids, appendix page 212) and
Figure J.1.2 (rectangular grids, appendix page 213) show the experimentally observed
Cordel frequencies for the shortest path problem for all considered range parameters
g ∈ {2, . . . , 7}. In addition, besides the Cordel frequency P (d1 ≥ d2) all graphs also
contain the probability P (d2 ≥ d3). It turns out that the graphs for the six range
parameters g ∈ {2, . . . , 7} do not differentiate greatly.

As a result, we state that the penalty alternatives for the shortest path problem in
directed grid graphs fulfill the generalized Cordel property (GeCoP) roughly in every
fourth or third random grid. Hence this is no prominent example for (GeCoP).

3.2 The Shortest Path Problem in Trellises

Besides the directed grid graphs a second type of graphs was studied.

Definition 3.2.1 (Trellis)
An (m,n) trellis with height m and width n consists of a start vertex s, a target
vertex t and m× n vertices in between, which are arranged in n columns and m rows.
From each vertex, m directed edges lead to each vertex in the rightward column. Fur-
thermore, m vertices lead from the start vertex s to each vertex in the first (leftmost)
column and m vertices from each vertex in the last (rightmost) column lead to the target
node t.

(n, n) trellises are called quadratic trellises.

The following Figure 3.2.1 shows a (3, 4) trellis without edge weights.

s t

width: n vertices

height:

m vertices

Figure 3.2.1: A (3, 4) trellis (height 3, width 4).
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3.2. The Shortest Path Problem in Trellises

Remark 3.2.2
Similar graphs occur in telecommunication theory, or more precisely in trellis modula-
tion theory (cf. [Ung 1982] and [Lan 2004]).

3.2.1 Experimental Results for the Shortest Path Problem in
Trellises

Definition 3.2.3 (Random Instances for the Shortest Path Problem in Trel-
lises)
A random instance of size (m,n) and range g ∈ N is a (m,n) trellis with ran-
domly uniformly distributed edge weights in the integer range [1, 10g].

For edge weights between 1 and 100 (g = 2) it is highly probable that two equally best
s− t paths exist. In such cases

w
(
P (0)

)
= w

(
P (1)

)
= min

B∈S
w(B)

and consequently d1 = 0 ≤ d2 hold. That is why the Cordel frequency is tending to
0% for n→∞. Along the same line of reasoning it follows that the Cordel frequency
converges to 0% for each finite range parameter g ∈ N. Figure 3.2.2 shows the Cordel
frequencies for quadratic n × n trellises with range parameters g = 2 (left) and g = 3
(right). For g = 2 the limit 0% turns out very clearly and for g = 3 at least the
frequencies are already slightly falling.
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Figure 3.2.2: Cordel frequencies for quadratic n× n trellis graphs.

Again, the complete results for all considered range parameters g ∈ {2, . . . , 7} can be
found in the appendix. The following table shows where to find which graph.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

reference to the appendix

quadratic n× n trellises Figure J.2.1, page 214
rectangular m×2m trellises Figure J.2.3, page 216
rectangular 2n× n trellises Figure J.2.5, page 218

As in the case of directed grid graphs, there was not much difference between the
Cordel frequencies for quadratic and rectangular trellises. We summarize the results
for quadratic n× n and for rectangular m× 2m and 2n× n trellises:

1. The results for the three considered sizes (quadratic n× n, rectangular m× 2m,
and rectangular 2n× n trellises) are very similar.

2. The Cordel frequency for the shortest path problem under the penalty selection
rule in trellises is around 20%− 25% if n is not too large.

3. For each g ∈ N the Cordel frequency has to converge to 0 for n→∞.

3.3 The Shortest Path Problem in Road Networks

with Real Travel Times

3.3.1 Obtaining and Preparing Real Datasets

Even more interesting than examining the Cordel frequency in directed grid graphs or
trellises, is the analysis of real road networks. For that purpose good datasets are
needed.

On the homepage of the ninth DIMACS Implementation Challenge [DIMACS] one
can download the road networks of the 50 US States and the District of Columbia
as undirected graphs. For each edge the travel times, the spatial distance and road
category is included. There, the travel time is the spatial distance divided by some
average speed, which depends on the road category (table taken from [DIMACS]).

Category
Category name

Average
code speed
11 primary highway with limited access (e.g. interstates) 1.0
21 primary road without limited access (e.g. US highways) 0.8
31 secondary and connecting road (e.g. state highways) 0.6
41 local, neighborhood, and rural road 0.4

With the likewise downloadable Perl script tiger2edimacs.pl the TIGER/Line files can
be converted into the Standard Challenge 9 Format of the implementation challenge.
By using the option -T the edge weights are set to the rounded off travel times.

Given such a real road network we want to determine the Cordel frequency for the
penalty alternatives to this shortest path problem. Therefore we have to choose a ran-
dom start and target vertex. But before we can choose random start and target nodes,
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3.3. The Shortest Path Problem in Road Networks with Real Travel Times

we need to understand the representation of real road networks in the TIGER/Line
files. Here, the following concept of nodes and shape points is essential.

Definition 3.3.1 (Shape Points and Nodes, [USCB, pp. 1-8])
Shape points describe the position and curvature of a street but are not required to
describe the topology of the road network. In contrast nodes are vertices that describe
the topology of the graph.

The following Figure 3.3.1 (a) illustrates the difference between nodes and shape points.
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(a) Original graph representa-
tion.

30 30
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34

(b) Graph representation
without ambiguous shape
points.

Node

Shape Point

Figure 3.3.1: An example road network with it’s two graph representations.

For the analysis of shortest path problems with randomly chosen start and target ver-
tices s and t it is problematic to have shape points. This is since the number of shape
points on a road segment affects the probability of this segment to be chosen as start
or target segment. In order to reduce the effects of different representations we thinned
out the graphs and cut out all shape points and redundant edges as shown in Figure
3.3.1 (b).

Table J.3.2 in the appendix on page 220 shows the size of the 51 road maps of the 50
US-States and the District of Columbia before and after the thinning out.

3.3.2 Experimental Results for the Shortest Path Problem in
Road Networks with Real Travel Times

Definition 3.3.2 (Random Instances for the Shortest Path Problem in Real
Road Networks)
A random instance of a road network consists of the thinned out road network
without shape points and two independent, uniform random vertices (starting node s
and target node t with s 6= t) which are connected in the road network.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

For these thinned out road maps we determined the Cordel frequencies. Figure 3.3.2
shows the ten largest and lowest Cordel frequencies for the road maps of the 50 US-
States and the District of Columbia. In addition, Figure J.3.1 in the appendix on page
220 shows all experimentally observed Cordel frequencies with confidence intervals.
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Figure 3.3.2: The ten largest and lowest Cordel frequencies P (d1 ≥ d2) under the penalty
selection rule for the shortest path problem in TIGER/Line road maps of
the US-States. See Table J.3.2 in the appendix on page 220 for a list of
abbreviations.

As Figure 3.3.2 above and Figure J.3.1 in the appendix on page 220 show, the Cordel
frequencies for the considered road networks vary between 15% and 42%. In some states
(for example Alaska) the Cordel frequency is, with approximately 16%, exceptionally
small and in other states (for example Arizona, Maine and Washington) the Cordel
frequency is, with approximately 40%, much larger, but still considerably smaller than
50%.

An interesting field for future research could be to examine whether simple properties of
the given graphs influence the Cordel frequency. Such properties could be for example
the number of vertices and edges or the maximal or average node degree.

3.4 The Minimum Spanning Tree Problem

After these extensive investigations of the Cordel frequency for the shortest path prob-
lem on three different graph classes (grid graphs, trellises and road networks), we de-
termine the Cordel frequency also for the minimum spanning tree problem. In contrast
to the previous shortest path problem, now only one graph class is considered. Be-
fore we present the obtained results we define the optimization problem and construct
instances for a given difference vector d.
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3.4. The Minimum Spanning Tree Problem

Definition 3.4.1 (Minimum Spanning Tree)
Consider an undirected, connected Graph G = (V,E) and a weight function w : E → R
on the edges of G.
Then a subgraph T of G without cycles, that connects all vertices V , is called a span-
ning tree. We call T a minimum spanning tree (MST) if T is a spanning tree
of G and if

w(T ) :=
∑
e∈T

w(e) ≤ w (T ′) for all spanning trees T ′ of G

holds.

3.4.1 Construction of Grid Graphs for the MST Problem
with Given Differences d

As for the shortest path problem, we try to construct instances of the minimum span-
ning tree problem, such that the related penalty alternatives P (0), P (1), . . . , P (k) fulfill

w
(
P (i)

)
− w

(
P (i−1)

)
= di for i = 1, . . . , k

with a predefined difference vector d = (d1, . . . , dk) ∈ Rk
>0 and a predefined set of

threshold parameters 0 < ε1 < · · · < εk. Unfortunately, our construction works only
for difference vectors d with d1 < d2 < . . . < dk and without a predefined threshold
parameter vector ε. However, we are convinced that there exist instances of the MST
problem to each difference vector d.

Theorem 3.4.2 (Penalty Alternatives in Ladder Graphs)
Given a difference vector d ∈ Rk

>0, with

0 < d1 < d2 < · · · < dk ,

we consider an undirected ladder graph of width k + 1 and the weights illustrated in
Figure 3.4.1.

v1,1 v1,2 v1,3 v1,k v1,k+1

v2,1 v2,2 v2,3 v2,k v2,k+1

1

1 1 1

2 2 2 2

2 + d1 2 + d2 2 + dk

Figure 3.4.1: Construction scheme.

1. The edges marked in red (the first ladder spoke {v1,1, v2,1} and all edges in the
lower row {v2,i, v2,i+1} for i = 1, . . . , k) have weight 1.

2. The remaining green ladder spokes {v1,i, v2,i} for i = 2, . . . , k + 1 have weight 2.

3. The vertical blue edges in the upper row {v1,i, v1,i+1} for i = 1, . . . k have the
weights 2 + d1, 2 + d2, . . . , 2 + dk from left to right.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

Then the spanning tree M (i) (i = 0, . . . , k), which consists of

� all red marked edges,

� the i left-most blue marked edges in the upper row {v1,1, v1,2} , {v1,2, v1,3} , . . . ,
{v1,i, v1,i+1},

� and the k−i right-most green marked ladder spokes {v1,i+2, v2,i+2} , {v1,i+3, v2,i+3} ,
. . . , {v1,k+1, v2,k+1}

is the i-th penalty alternative P (i). Therewith the penalty alternatives have the given
weight differences d = (d1, . . . , dk). See Figure 3.4.2 for an illustration of the penalty
alternatives.

1

1 1 1 1

2 2 2 2

v1,1 v1,2 v1,3 v1,4 v1,5

v2,1 v2,2 v2,3 v2,4 v2,5

M (0) = P (0)

1

1 1 1 1

2 2 2

2 + d1v1,1 v1,2 v1,3 v1,4 v1,5

v2,1 v2,2 v2,3 v2,4 v2,5

M (1) = P (1)

1

1 1 1 1

2 2

2 + d1 2 + d2v1,1 v1,2 v1,3 v1,4 v1,5

v2,1 v2,2 v2,3 v2,4 v2,5

M (2) = P (2)

1

1 1 1 1

2

2 + d1 2 + d2 2 + d3v1,1 v1,2 v1,3 v1,4 v1,5

v2,1 v2,2 v2,3 v2,4 v2,5

M (3) = P (3)

1

1 1 1 1

2 + d1 2 + d2 2 + d3 2 + d4v1,1 v1,2 v1,3 v1,4 v1,5

v2,1 v2,2 v2,3 v2,4 v2,5

M (4) = P (4)

Figure 3.4.2: Penalty alternatives for the minimum spanning tree problem on the graph
from Figure 3.4.1 with k = 4.
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3.4. The Minimum Spanning Tree Problem

Proof. In a first step we show that the spanning trees M (0), . . . ,M (k), stated in the
theorem and illustrated in Figure 3.4.2, are indeed penalty alternatives. This is not
difficult to prove but sometimes a little bit technical. As a matter of principle, each
step of the proof is basically just an execution of Kruskal’s algorithm.

We start with the optimal solution. Since di > 0 for i = 1, . . . , k holds, the red marked
edges with weight 1 and the green marked edges with weight 2 are the 2k + 1 shortest
edges. Since these edges form a spanning tree, the spanning tree M (0) is the optimal
spanning tree and the penalty alternative P (0).

Now we show that the spanning tree M (i) is a penalty alternative for each penalty
parameter ε with εi−1 ≤ ε ≤ εi and

ε0 := 0, ε1 :=
d1

2
, ε2 :=

d2

2
, . . . εk :=

dk
2
.

The weights of the edges in the graph punished with εi := di
2

are shown in Figure 3.4.3
(a).

1 + d1

2

1 + di

21 + di

2

2 + di

1 + di

2

2 + di

1 + di

2 1 + di

2

2 + di

1 + di

2

2 + di

1 + di

2

2 + di

1 + di

2

2 + di

v1,1 v1,2 v1,i v1,i+1 v1,i+2 v1,k v1,k+1

v2,1 v2,2 v2,i v2,i+1 v2,i+2 v2,k v2,k+1

2 + d1 2 + di 2 + di+1 2 + dk

(a) Graph with penalized weights.

1 + d1

2

v1,1 v1,2 v1,i v1,i+1 v1,i+2 v1,k v1,k+1

v2,1 v2,2 v2,i v2,i+1 v2,i+2 v2,k v2,k+1

(b) Penalty alternative M (i−1) = P (i−1).

1 + d1

2

v1,1 v1,2 v1,i v1,i+1 v1,i+2 v1,k v1,k+1

v2,1 v2,2 v2,i v2,i+1 v2,i+2 v2,k v2,k+1

(c) Penalty alternative M (i) = P (i).

Figure 3.4.3: Penalized graph and penalty alternatives for penalty parameter εi := di
2 .

Obviously, for the penalized edge weights the following statements are true.

1. The penalized weight of the red edges is still smaller than the penalized weight
of the green edges.

2. The first i − 1 blue marked edges in the upper row {v1,1, v1,2} , {v1,2, v1,3} , . . . ,
{v1,i−1, v1,i}, with weights 2 + d1, 2 + d2, . . . 2 + di−1 ≤ 2 + di from left to right,
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

have also a smaller penalized weight than the green marked edges because of
d1 < d2 < · · · < dk.

3. The i-th edge in the upper row {v1,i, v1,i+1}, indicated in bold, has the same
weight as the green marked edges.

4. All the remaining edges in the upper column have a greater weight than the green
marked edges.

Hence, the k + i edges with the smallest penalized weights are

� all k + 1 red marked edges

� and the first i−1 blue marked edges in the upper row {v1,1, v1,2} , {v1,2, v1,3} , . . . ,
{v1,i−1, v1,i} .

These k+i edges are chosen by Kruskal’s algorithm, since they do not form a cycle. For
the missing k− i+ 1 edges (a spanning tree consists of 2k− 1 edges in total), all green
marked edges and the i-th edge in the upper row {v1,i, v1,i+1} are worth considering,
since they have the smallest penalized weights of all remaining edges. But the i − 1
left-most green marked ladder spokes {v1,2, v2,2} , . . . , {v1,i, v2,i} cannot be chosen, since
each of them would provoke at least one cycle. Hence, Kruskal’s algorithm chooses the
k− i−1 right-most green marked ladder spokes {v1,i+2, v2,i+2} , . . . , {v1,k+1, v2,k+1} and
one of the two edges indicated in bold – either the (i+1)-th ladder spoke {v1,i+1, v2,i+1}
or the i-th edge in the upper row {v1,i, v1,i+1}. These two spanning trees are in fact
the trees M (i−1) and M (i) described in the theorem.

Therewith we showed, that εi := di
2

is the threshold parameter between M (i) and
M (i+1). Furthermore, the k-th spanning tree M (k) is obviously the ∞-penalty alter-
native. Together with the optimal spanning tree for the unpunished problem, we get
the following table, containing all penalty alternatives with their weight and penalized
part.

i w (P i) p (P i)

0 3k + 1 3k + 1
1 3k + 1 + d1 3k + 1− 2
2 3k + 1 + d1 + d2 3k + 1− 4
...

...
...

k 3k + 1 + d1 + d2 + · · ·+ dk 3k + 1− 2k

In general

w
(
P (i)

)
= 3k + 1 + d1 + · · ·+ di

p
(
P (i)

)
= 3k + 1− 2i

hold and consequently

εi =
w
(
P (i)

)
− w

(
P (i−1)

)
p (P (i−1))− w (P (i))

=
di
2

is the i-th threshold parameter, as claimed.

So we proved Theorem 3.4.2. �
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3.4. The Minimum Spanning Tree Problem

3.4.2 Experimental Results for the MST Problem

As for the shortest path problem, we determined the Cordel frequency for random grid
graphs. But in contrast to the shortest path problem, we used undirected instead of
directed graphs for the minimum spanning tree problem.

Definition 3.4.3 (Random Instances for the Minimum Spanning Tree Prob-
lem in Undirected Grid Graphs)
A random instance of size (m,n) and range g ∈ N is an undirected m × n grid
with randomly uniformly distributed edge weights in the integer range [1, 10g].

As in case of the shortest path problem in trellises, it is highly probable that there
exist two equally best minimal spanning trees. Thus, the Cordel frequency is again
converging to 0% for n → ∞. In contrast to the shortest path problem, this limit
can be observed very clearly even for g = 3 and small n, as the following Figure 3.4.4
shows.
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Figure 3.4.4: Cordel frequencies for undirected quadratic n× n grid graphs.

We summarize the results for the minimum spanning tree problem in undirected grid
graphs:

1. Again, the results for quadratic and rectangular grids are very similar.

2. The graph of the Cordel frequency, as a function of n, starts with approximately
10% and is then increasing until the maximal Cordel frequency of ≈ 25% is
reached. Then the Cordel frequency is decreasing and has to converge to 0% for
n→∞.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

3.5 Knapsack Problems

Finally, we determined the Cordel frequency for knapsack problems. We define three
different types of knapsack problems.

Definition 3.5.1 (Knapsack Problems)
Consider a weight vector w ∈ Rn

≥0 and a vector of values v ∈ Rn
≥0. Thus we have n

items (w1, v1), . . . , (wn, vn) with weights wi and values vi. Furthermore let C ≥ 0 be a
given knapsack capacity.
Then a knapsack problem is a problem of the following type.

max
n∑
i=1

vixi

subject to
n∑
i=1

wixi ≤ C

xi ∈ {0, 1, . . . , b} for i = 1, . . . , n

We consider the following three different types of knapsack problems:

(i) In case of b = 1, we call the problem above 0-1-knapsack problem or binary
knapsack problem [KP].

(ii) In case of b = ∞, where we have no upper bound for xi, we call the problem
unbounded knapsack problem [UKP].

(iii) In case of 1 ≤ b < ∞, we call the problem b-bounded knapsack problem
[BKP(b)].

Obviously, the following remarks hold.

Remark 3.5.2
(i) KP and BKP(1) are equivalent.

(ii) Let P (0), . . . , P (k−1) be the k best penalty alternatives for a given unbounded knap-
sack problem UKP and let

bUKP := max
0≤i≤k−1,
1≤j≤n

P
(i)
j

be the maximal frequency of used items in these penalty alternatives. Then
P (0), . . . , P (k−1) are the k best penalty alternatives for BKP (bUKP), too.

Hence it is reasonable to consider the penalty alternatives for the following sequence
of problems

KP – BKP(2) – BKP(3) – . . . – BKP(bUKP − 1) – UKP

with weights w and values v. In this way we could analyze a transition from the bi-
nary knapsack problem to the unbounded knapsack problem. Unfortunately, solving
BKP(b) instances is very time-consuming even for small b (for example b = 10). Thus,
in fact, we only established the Cordel frequencies for some selected bounds b.

82



3.5. Knapsack Problems

Construction of Instances for a Given Difference Vector d

As in the previous sections, we tried to construct knapsack instances to a given dif-
ference vector d ∈ Rk

>0. Unfortunately, our efforts were not successful. Even for
difference vectors d with certain properties (for example d1 < d2 < . . . < dk) we did
not find a construction scheme. This leads us to the supposition that their might be
difference vectors d ∈ Rk

>0 for which no instance of the knapsack problem exists. But
to decide whether this supposition is true or not, further investigations are necessary.

3.5.1 Experimental Results for the Knapsack Problem

Definition 3.5.3 (Random Instances for the Knapsack Problem)
According to [MT 1990, p. 67], we considered three types of random instances. In each
of the three cases wi was chosen uniformly randomly in [1, 10g] with a range parameter
g ∈ N. We differentiated:

uncorrelated instances: vi was chosen uniformly randomly in [1, 10g],
too.

weakly correlated instances: vi was chosen uniformly randomly in
[wi − 10g−1, wi + 10g] with respect to pi ≥ 1.

strongly correlated instances: vi = wj + 10g−1

In each case the knapsack capacity was set to C = 1
2

∑n
i=1wi.

Again use a range parameter g, whereupon a huge g implies quasi-continuous instances.
Hence, we analyzed two transitions: The transition from discrete (small range param-
eter g) to quasi-continuous instances (huge range parameter g) and the transition from
the binary (b = 1) to the unbounded (b =∞) knapsack problem.
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Figure 3.5.1: Cordel frequencies for b-bounded knapsack problems with g = 4 and b <∞.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

We start with the analysis of the b-bounded knapsack problem with b < ∞. Figure
3.5.1 shows the experimentally observed Cordel frequencies for range parameter g = 4
and bounds b ∈ {1, 10}. It turns out that the Cordel frequency for strong correlated
instances is usually a little bit smaller than the Cordel frequency for uncorrelated and
weakly correlated instances, especially for greater n. While the Cordel frequency for
very small item numbers (n ≤ 5) can be even about 50%, the frequencies are quickly
stabilizing at a low level of 15%−25%. The two pictures suggest a slight upward trend
for greater bounds b which cannot be substantiated. The curve shape, presented here
for g = 4, is found again for the other range size parameters g ∈ {2, . . . , 7} as the
figures in Appendix J.5 (pp. 228-230) show.

In case of the unbounded knapsack problem (b =∞), the Cordel frequencies for
all three distributions seem to be the same, as Figure 3.5.2 shows.
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(b) g = 3
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Figure 3.5.2: Cordel frequencies for the unbounded knapsack problem (b =∞).
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3.6. Adjusted Frequencies without Consideration of Multiple (Equally) Best Solutions

Here, a very surprising phenomenon occurs: The Cordel frequency heavily depends
on the range parameter g! While the graphs for g ≥ 4 and 3 ≤ n ≤ 100 all look the
same, the graphs for g = 2 and g = 3 show a complete different curve shape.

� For g = 2 the Cordel frequency for small n (n ≤ 30) is approximately 50%. For
increasing n the Cordel frequency is increasing and seems to converge to ≈ 70%.

� For g = 3, however, the graph first decreases from ≈ 50% to ≈ 25%, before it
slightly increases. This time, the Cordel frequency seems to converge to ≈ 35%
which is considerably smaller than the suspected limit of ≈ 70% for g = 2.

� As already mentioned, for g ∈ {4, . . . , 7} the graphs look nearly all the same.
The Cordel frequency is decreasing from ≈ 50% to a suspected limit 0 − 10%.
This decrease becomes weaker and weaker for increasing n. The only difference
the four pictures for g ∈ {4, . . . , 7} (cf. Figure J.5.4 (c)-(d) on page 231) show,
is that the limit which seems to become smaller for greater range parameters g.

� Note that the suggested limits are not confirmed by investigation of instances
with n� 100. Hence, these limits should be treated with caution.

The complete results can be found in the appendix. Note that the running time for
the computation of the three best penalty alternatives for strongly correlated instances
is very long. That is why we considered only small n and only few random instances
there.

reference to the appendix

b = 1 Figure J.5.1, page 228
b = 10 Figure J.5.2, page 229
b = 20 Figure J.5.3, page 230
b =∞ Figure J.5.4, page 231

3.6 Adjusted Frequencies without Consideration of

Multiple (Equally) Best Solutions

For some optimization problems it is very probable to have at least two optimal solu-
tions for great n. Two or more equally best optimal solutions imply

w
(
P (0)

)
= w

(
P (1)

)
= min

B∈S
w(B)

and consequently d1 = 0. Hence, (GeCoP) cannot be fulfilled because of d2 ≥ 0 = d1.

This phenomenon was observed for the shortest path problem in trellises (cf. Sub-
section 3.2.1, starting on page 73) and for the minimum spanning tree problem in
undirected grid graphs (cf. Subsection 3.4.2, starting on page 81). In both cases, the
probability of having at least two (equally best) optimal solutions is converging to
100% for increasing trellises or grid graphs respectively (n → ∞). Consequently, the
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

Cordel frequency is tending to 0% for n → ∞ as Figures 3.2.2 (p. 73) and 3.4.4 (p.
81) for the shortest path problem and the MST problem show, respectively.

One can eliminate the influence of two or more equally best optimal solutions, by
ignoring the second equi-optimal solution. This can be done by considering the so-
called adjusted Cordel frequency P

(
d1 ≥ d2

)
with

d1 :=

{
w
(
P (1)

)
− w

(
P (0)

)
, for w

(
P (0)

)
6= w

(
P (1)

)
,

w
(
P (2)

)
− w

(
P (0)

)
, for w

(
P (0)

)
= w

(
P (1)

)
,

(3.1)

and

d2 :=

{
w
(
P (2)

)
− w

(
P (1)

)
, for w

(
P (0)

)
6= w

(
P (1)

)
,

w
(
P (3)

)
− w

(
P (2)

)
, for w

(
P (0)

)
= w

(
P (1)

)
.

(3.2)

In fact, this can be understood as a redefinition of the penalty selection rule.

In the next two subsections we present the experimentally observed adjusted frequen-
cies for the shortest path problem in trellises and for the MST problem in undirected
grid graphs. This consideration of the adjusted Cordel frequency is complementary in
order to attain a comprehensive picture.

3.6.1 Experimental Results for the Shortest Path Problem in
Trellises

Figure 3.6.1 shows the adjusted Cordel frequencies for the shortest path problem in
trellises. Like the original Cordel frequency, the adjusted Cordel frequency starts with
20%−25% and increases subsequently. For g = 2 it seems that the adjusted Cordel fre-
quency P

(
d1 ≥ d2

)
is tending to 100% (or at least to a limit greater than 85%) which

might be quite surprising. For g = 3 and n = 100 the adjusted Cordel frequencies are
also already above 50%. But for g > 3 the adjusted frequencies for 3 ≤ n ≤ 100 are
roughly stable around 20−30%. Here, no trend can be detected without consideration
of larger grid sizes n.

In fact, the courses of these new graphs are not very surprising if you look at P (d2 ≥ d3)
represented by the blue crosses in Figure 3.2.2 on page 73. In fact, for each instance
with at least two optimal solutions (w

(
P (0)

)
= w

(
P (1)

)
),

d1 = w
(
P (2)

)
− w

(
P (0)

)
= w

(
P (2)

)
− w

(
P (1)

)
= d2

and d2 = w
(
P (3)

)
− w

(
P (2)

)
= d3 ,

and consequently P
(
d1 ≥ d2

)
= P (d2 ≥ d3) hold. Hence, P

(
d1 ≥ d2

)
and P (d2 ≥ d3)

are nearly the same if it is very probable that there are at least two optimal solutions.

The complete results for all considered range parameters g ∈ {2, . . . , 7} and grid sizes
can be found in the appendix. The following table shows where to find which graph.
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3.6. Adjusted Frequencies without Consideration of Multiple (Equally) Best Solutions
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Figure 3.6.1: Adjusted Cordel frequencies P
(
d1 ≥ d2

)
for quadratic n×n trellis graphs.

Cordel frequencies
P (d1 ≥ d2)

adjusted Cordel frequencies
P
(
d1 ≥ d2

)
quadratic n× n trellises Figure J.2.1, page 214 Figure J.2.2, page 215
rectangular m×2m trellises Figure J.2.3, page 216 Figure J.2.4, page 217
rectangular 2n× n trellises Figure J.2.5, page 218 Figure J.2.6, page 219

The results for rectangular m×2m trellises are very similar to the results for quadratic
n×n trellises. But for rectangular 2n×n trellises and g = 2 the picture is significantly
different. Here, the adjusted frequencies do not seem to converge to a limit greater
than 85%. Instead, for n ≥ 50 the adjusted frequencies seem to be constant around
≈ 75%. For g > 2 the pictures look as usual. Hence, there is a difference between
m × 2m trellises which are twice as wide as they are high and 2n × n trellises which
are twice as high as they are wide.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

3.6.2 Experimental Results for the MST Problem

Eliminating the influence of more than one optimal solutions by considering the ad-
justed Cordel frequency P

(
d1 ≥ d2

)
, leads to the frequencies shown in Figure 3.6.2.

The adjusted frequency starts again with ≈ 10% and increases subsequently. For g = 3
it seems that the adjusted Cordel frequency P

(
d1 ≥ d2

)
tends to 100%. But for g = 2,

the function is decreasing for n > 20 with an unknown limit, which may be between
50% and 70%. But this suggestion really needs to be verified through consideration of
larger grids.
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Figure 3.6.2: Adjusted Cordel frequencies P
(
d1 ≥ d2

)
for undirected quadratic n × n

grid graphs without consideration of the second optimum.

In the appendix the graphs for all considered range parameters g can be found. Note,
that for g ∈ {6, 7} only small grids were considered.

Cordel frequencies
P (d1 ≥ d2)

adjusted Cordel frequencies
P
(
d1 ≥ d2

)
quadratic n× n grids Figure J.4.1, page 224 Figure J.4.2, page 225
rectangular n× 2n grids Figure J.4.3, page 226 Figure J.4.4, page 227

3.7 Summary of the Key Results

We conclude this chapter with a summary of the key results, obtained in all three
problem classes (shortest path problem, minimum spanning tree problem and knapsack
problem). The table below gives an overview of where which phenomenon was observed,
including the associated page references.
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3.7. Summary of the Key Results

Observation 1 For some optimization problems the probability of having at least
two optimal solutions is converging to 1 for n → ∞. In this case
the Cordel frequency has to converge to 0, since two or more optimal
solutions imply

w
(
P (0)

)
= w

(
P (1)

)
= min

B∈S
w(B)

and consequently d1 = 0. Here, (GeCoP) cannot be fulfilled, since
d2 ≥ 0 = d1 holds.

Observation 2 Considering the adjusted Cordel frequencies P
(
d1 ≥ d2

)
with

d1 :=

{
w
(
P (1)

)
− w

(
P (0)

)
, for w

(
P (0)

)
6= w

(
P (1)

)
w
(
P (2)

)
− w

(
P (0)

)
, for w

(
P (0)

)
= w

(
P (1)

)
and

d2 :=

{
w
(
P (2)

)
− w

(
P (1)

)
, for w

(
P (0)

)
6= w

(
P (1)

)
w
(
P (3)

)
− w

(
P (2)

)
, for w

(
P (0)

)
= w

(
P (1)

)
we are able to eliminate the influence of a second (equi-)optimal so-
lution (cf. Observation 1). If it is very probable to have at least
two optimal solutions, then P (d2 ≥ d3) ≈ P

(
d1 ≥ d2

)
holds. Elimi-

nating the influence of a second optimal solutions leads to adjusted
Cordel frequencies, that very often seem to converge to a limit be-
tween 75% and 100%

Observation 3 For the unbounded knapsack problem the limit of the Cordel fre-
quency seems to depend heavily on the range parameter g. The
experimental results suggest limits between ≈ 75% (g = 2, cf. Fig-
ure 3.5.2 (a) on page 84) and ≈ 0% (g = 7, cf. Figure J.5.4 (f) on
page 231 in the appendix).

Observation 4 If none of the three unexpected observations above occurred, lim-
its between 15% and 25% were observed. In this case, all observed
graphs were very smooth. For n ≥ 30 the determined Cordel fre-
quencies were nearly constant. For us, this is the most important
observation. We even go so far to say that typical Cordel frequen-
cies for the penalty selection rule are between 15% and 30%.

Observation 5 For real road networks, Cordel frequencies between 16% and 42%
occurred.
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3. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

References for the observed results:

Reference

Observation 1 shortest path problem in trellises (pp. 73 - 74)
minimal spanning tree problem in grid graphs (pp. 81 - 81)

Observation 2 shortest path problem in trellises (pp. 86 - 87)
minimal spanning tree problem in grid graphs (pp. 88 - 88)

Observation 3 unbounded knapsack problem (pp. 83)
Observation 4 shortest path problem in grid graphs (pp. 71 - 72)

bounded knapsack problem with b <∞ (pp. 83 - 85)
Observation 5 shortest path problem in road networks with real travel

times (pp. 75 - 76)
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Chapter 4

The Cordel Frequency
under the Best Solutions Rule

4.1 The Algorithm of E. Lawler for Computing the

k Best Solutions

In 1972 E. Lawler [Law 1972] presented an algorithm for computing the k best solu-
tions to discrete optimization problems. This algorithm was a specialization of Murty’s
method [Mur 1968] for the assignment problem. Since Lawler’s algorithm is very gen-
eral and not only applicable for the assignment problem, we want to present it here.
To be more precise, Lawler’s method is applicable to all binary optimization problems
with an efficient procedure to determine the optimal solution when some variables have
fixed values. This is, for example, the case for ranking the k shortest simple paths, the
k least costly spanning trees and the k best solutions to the binary knapsack problem.
And, as Lawlers method is an advancement of Murty’s algorithm, it is applicable to
the assignment problem as well.

Algorithm 5 (Algorithm for Computing the k Best Solutions to Binary
Optimization Problems, [Law 1972])

Initialization: Compute an optimal solution to the original problem and put this
solution together with the variable s = 0 in the list L. Set m = 1.

Step 1 Remove the best solution and the corresponding variable s form L. This
solution is the m-th best solution x(m).

Step 2 If m = k then stop. Otherwise continue with Step 3.

Step 3 x(m) was obtained by fixing the values of x1, x2, . . . , xs. With these s
values been kept, we consider the following n−s subproblems by stepwise
fixing the remaining variables as follows:

(1) xs+1 = 1− x(m)
s+1

(2) xs+1 = x
(m)
s+1 , xs+2 = 1− x(m)

s+2
...

(n− s) xs+1 = x
(m)
s+1 , xs+2 = x

(m)
s+2, . . . xn = x(m)

n
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4. The Cordel Frequency under the Best Solutions Rule

Compute an optimal solution to each of these n− s problems and store
all of them together with the index of the last fixed variable in the list L.
Set m = m+ 1 and go to Step 1.

The basic idea of the algorithm is to partition the set of feasible solutions. More
precisely, if S is the set of feasible solutions for the subproblem which provided x(m) as
optimal solution, then the set S\

{
x(m)

}
is partitioned into n− s sets S(1), . . . , S(n−s).

Here, S(i) denotes the set of feasible solutions for subproblem (i) defined in Step 3 of
the algorithm. Hence, the branching excludes exactly x(m) from further considerations.
View [Law 1972] for additional hints on general storage reduction and efficiency im-
provement.

4.2 Experimentally Obtained Cordel Frequencies

for the Best Solutions Rule

The algorithm of Lawler may sound elegant and versatile, but unfortunately it takes a
long time to compute the three best solutions to a given optimization problem, when
the number of variables becomes too great. That is why we did not analyze as many
optimization problems as we did in case of the penalty selection rule. In the following we
present the experimentally observed Cordel frequencies for the shortest path problem
(Subsection 4.2.1) and the minimum spanning tree problem (Subsection 4.2.2) in grid
graphs.

4.2.1 Experimental Results for the Shortest Path Problem in
Grid Graphs

For the best solutions rule the same kind of random instances was considered as for
the penalty selection rule.

Definition 4.2.1 (Random Instances for the Shortest Path Problem in Di-
rected Grid Graphs (cf. Definition 3.1.5 on page 71))
A random instance of height m > 2, width n > 2 and range g ∈ N is a di-
rected m×n grid with randomly uniformly distributed edge weights in the integer range
[1, 10g].

For the shortest path problem two types of pictures emerged. As an example, Figure
4.2.1 shows the experimentally determined Cordel frequencies for quadratic n × n
grid graphs and g ∈ {2, 3}. For g = 2 the red dots, which represent the Cordel
frequency, seem to be constant ≈ 60%. But for g ∈ {3, 4, 5, 6, 7}, where all graphs look
similar, the frequency seems to tend to 50%.
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Figure 4.2.1: Cordel frequencies for quadratic n× n grid graphs.

For rectangular n × 2n grids the pictures are almost identical. To see all results,
please observe figures K.1.1 (quadratic grids) and K.1.2 (rectangular grids) in the
Appendix on pages 234 and 235.

4.2.2 Experimental Results for the Minimum Spanning Tree
Problem in Grid Graphs

The same kind of random instances was considered as in case of the penalty selection
rule.

Definition 4.2.2 (Random Instances for the Minimum Spanning Tree Prob-
lem in Directed Grid Graphs (cf. Definition 3.4.3 on page 81))
A random instance of size (m,n) and range g ∈ N is an undirected m × n grid
with randomly uniformly distributed edge weights in the integer range [1, 10g].

Due to the long running times, not each grid size parameter n ∈ {3, . . . , 100} was
considered and for larger n only very few random instances (partially less than 100)
were analyzed.

As already discussed in Section 3.6 (starting on page 85) the probability of having
multiple (equally) best optimal solutions is converging to 1 for n → ∞. In analogy,
for n large enough it is very likely to have at least three equally best optimal solutions
implying d1 = d2 = 0. Consequently, the Cordel frequency is tending to 100% for
n → ∞. This trend can be seen very clearly for g = 2 and g = 3 (cf. Figure 4.2.2).
But for g > 3 and n × n grids with n ≤ 100, the Cordel frequencies seem to be
constantly 50%. However, as mentioned earlier, even for g > 3 the Cordel frequency
has to tend to 100% for n→∞.
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4. The Cordel Frequency under the Best Solutions Rule
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Figure 4.2.2: Cordel frequencies for quadratic n×n grids. Note that for n ≥ 30 only few
instances were considered.

Again, the results for quadratic n × n grids and rectangular n × 2n grids are almost
identical. Figures K.2.1 (quadratic grids) and K.2.2 (rectangular grids) in the Appendix
on pages 236 and 237 show all experimentally observed Cordel frequencies for the
considered range parameters g = 2, . . . , 7.

4.2.3 Comparison with the Results for the Penalty Selection
Rule

Although only two optimization problems have been studied for the best solutions rule,
it can be seen that both selection rules provide different results. We suspect that typ-
ical Cordel frequencies under the best solutions rule are between 50% or 60%. But to
prove or disprove this conjecture more extensive investigations are necessary.

The next chapter provides some more results for the best solutions rule. There, we
exactly compute Cordel frequencies under the best solutions rule for optimization prob-
lems where the probability density function of the functional values is given.
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Chapter 5

Theoretical Models

5.1 Best Solutions Rule for

Optimization Problems with Density f

In this section we want to compute the Cordel frequency for optimization problems un-
der the assumption that we know the distribution of the functional values of all feasible
solutions. These results can be compared with the experimentally determined Cordel
frequencies presented in the previous Chapter 4 (starting on page 91). Furthermore
these theoretical considerations may help in order to decide what are typical Cordel
frequencies for the best solutions rule. For this purpose we consider the following
model.

Definition 5.1.1 (Optimization Problem with Density f)
Let f : R → R≥0 be an arbitrary probability density function. We say that a ran-
dom optimization problem has density f , if the functional values of the feasible
solutions are independent and identically distributed with density f . Additionally, F
denotes the cumulative distribution function of the functional values.

Therewith we can define the Cordel frequency for minimization and maximization
problems with density f .

Definition 5.1.2 (Cordel Frequency of an Optimization Problem with Den-
sity f)
Suppose that (V1, . . . , Vn) are n independent random variables with density f represent-
ing the functional values of an optimization problem with exactly n feasible solutions
and density f . By

V1:n ≤ V2:n ≤ . . . ≤ Vn:n

we denote the corresponding order statistics (cf. [ABN 1992]) which consists of the
values V1, . . . , Vn sorted in ascending order.
Then CFf,min(n) denotes the Cordel frequency of a minimization problem with

density f , which is the probability that the three best solutions of a minimization
problem with density f and n feasible solutions fulfill the generalized Cordel property.
Hence,

CFf,min(n) := P (d1 ≥ d2) = P (V2:n − V1:n ≥ V3:n − V2:n) . (5.1)
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5. Theoretical Models

In analogy CFf,max(n) denotes the Cordel frequency of a maximization problem

with density f which is

CFf,max(n) := P (dn−1 ≥ dn−2) = P (Vn:n − Vn−1:n ≥ Vn−1:n − Vn−2:n) . (5.2)

Remark 5.1.3
The Cordel frequency of an optimization problem with density f is translation invariant
and scale invariant for positive factors regarding the density function f :

CFf+t(n) = CFf (n) for all t ∈ R
and CFsf (n) = CFf (n) for all s > 0

This is due to the fact that the equivalences

v2 − v1 ≥ v3 − v2 ⇔ (v2 + t)− (v1 + t) ≥ (v3 + t)− (v2 + t)

and

v2 − v1 ≥ v3 − v2 ⇔ sv2 − sv1 ≥ sv3 − sv2

hold for all t ∈ R and s > 0.

Before computing the Cordel frequencies for concrete density functions f we first discuss
which results are to be expected.

Conjecture 5.1.4
Consider a density function f : [0, 1]→ [0, 1].

If limx→1 f(x) > 0 holds and if f is continuous, then the Cordel frequency for the
maximization problem converges to 1

2
. Hence,

lim
n→∞

CFf,max(n) =
1

2

holds.

This conjecture can easily been transferred to density functions f : [a, b]→ [0, 1] with
a, b ∈ R and to minimization instead of maximization problems. Indeed, the observa-
tions presented in the following subsections 5.1.1, 5.1.2, and 5.1.3 match this conjecture.

For density functions defined over the whole range R, obviously limx→∞ f(x) = 0 holds.
Here, we cannot apply the above conjecture. The question is, whether in this case every
value v ∈ [0, 1] is a possible limit for the Cordel frequency. That is to say: Does there
exist a density function fv : R→ [0, 1] with

lim
n→∞

CFf,max(n) = v

for each v ∈ [0, 1]? In section 5.1.5 (starting on page 107) we come back to this question
and give our conjecture.
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5.1. Best Solutions Rule for Optimization Problems with Density f

After this preliminary considerations we start computing the Cordel frequency. Given
the joint density function f1,2,3:n (v1, v2, v3) of the three smallest functional values we
can compute the Cordel frequency by

CFf,min(n) = P (V2:n − V1:n ≥ V3:n − V2:n)

=

∫ ∞
−∞

∫ ∞
v1

∫ ∞
v2

1v2−v1≥v3−v2 · f1,2,3:n (v1, v2, v3) dv3 dv2 dv1

=

∫ ∞
−∞

∫ ∞
v1

∫ 2v2−v1

v2

f1,2,3:n (v1, v2, v3) dv3 dv2 dv1 . (5.3)

In the last step we used

v2 − v1 ≥ v3 − v2 ⇔ v3 ≤ 2v2 − v1

and since 2v2 − v1 ≥ v2 + (v2 − v1) ≥ v2 we can use 2v2 − v1 as upper bound for v3

without violating the condition v3 ≥ v2.

From order statistics (cf. [ABN 1992, p. 24]) we know that the joint density function
of the three smallest values V1:n, V2:n, V3:n equals

f1,2,3:n (v1, v2, v3) =
n!

(n− 3)!
(1− F (v3))n−3 f (v1) f (v2) f (v3) (5.4)

for −∞ < v1 ≤ v2 ≤ v3 < ∞ where f denotes the underlying density function and
F denotes the cumulative distribution function of the non-ordered values. Insertion of
equation (5.4) into equation (5.3) yields

CFf,min(n) =

∫ ∞
−∞

∫ ∞
v1

∫ 2v2−v1

v2

f1,2,3:n (v1, v2, v3) dv3 dv2 dv1

=
n!

(n− 3)!

∫ ∞
−∞

f (v1)

∫ ∞
v1

f (v2)

∫ 2v2−v1

v2

f (v3) (1− F (v3))n−3 dv3 dv2 dv1.

This multiple integral is often very difficult to compute, since the inner integral

∫ 2v2−v1

v2

f (v3) (1− F (v3))n−3 dv3

is the most complex one. Using Fubini’s theorem for positive functions, we can simplify
the equation by changing the order of integration such that the most complex integral
comes in the outer shell.
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CFf,min(n) =

∫ ∞
−∞

∫ v3

−∞

∫ 2v2−v3

−∞
f1,2,3:n (v1, v2, v3) dv1 dv2 dv3

=
n!

(n− 3)!

∫ ∞
−∞

f (v3) (1− F (v3))n−3

∫ v3

−∞
f (v2)

∫ 2v2−v3

−∞
f (v1) dv1 dv2 dv3

=
n!

(n− 3)!

∫ ∞
−∞

f (v3) (1− F (v3))n−3

∫ v3

−∞
f (v2)F (2v2 − v3) dv2 dv3 (5.5)

Note that v1 ≤ 2v2 − v3 ensures v1 ≤ v2 as well, since 2v1 − v3 ≤ v2 for v2 ≤ v3 holds.

In analogy we compute the Cordel frequency for maximization problems with density
f . With

fn−2,n−1,n:n (vn−2, vn−1, vn) =
n!

(n− 3)!
F (vn−2)n−3 f (vn−2) f (vn−1) f (vn)

for −∞ < vn−2 ≤ vn−1 ≤ vn <∞ (cf. [ABN 1992, p. 26]) and

dn−1 ≥ dn−2 ⇔ vn − vn−1 ≥ vn−1 − vn−2 ⇔ vn ≥ 2vn−1 − vn−2 ≥ vn−1

for vn−1 ≥ vn−2 follows

CFf,max(n) = P (Vn:n − Vn−1:n ≥ Vn−1:n − Vn−2:n)

=

∫ ∞
−∞

∫ ∞
vn−2

∫ ∞
2vn−1−vn−2

fn−2,n−1,n:n (vn−2, vn−1, vn) dvn dvn−1 dvn−2

=
n!

(n− 3)!

∫ ∞
−∞

F (vn−2)n−3 f (vn−2)

∫ ∞
vn−2

f (vn−1)

∫ ∞
2vn−1−vn−2

f (vn) dvn dvn−1 dvn−2

=
n!

(n− 3)!

∫ ∞
−∞

F (vn−2)n−3 f (vn−2)

∫ ∞
vn−2

f (vn−1) (1− F (2vn−1 − vn−2)) dvn−1 dvn−2 .

The final equation (5.5) is used to compute the Cordel frequency for different dis-
tributions f . The results are presented in the next subsections with Section 5.1.1
dealing with distributions on the interval [0, 1], Section 5.1.2 considering distributions
on [0,∞), and Section 5.1.3 covering distributions on the whole range R. Appendix
L starting on page 239 gives a summary of the considered distributions containing
the density and cumulative density functions as well as the graphs of the density func-
tions. Furthermore, Appendix M.1 starting on page 243 includes the Maple worksheets
[Maple 2008] containing all computations and results.

5.1.1 Cordel Frequencies for Distributions on [0, 1]

The most prominent probability distribution on [0, 1] is the continuous uniform distri-
bution with density function

u(x) :=

{
1 for 0 ≤ x ≤ 1 ,

0 for x < 0 or x > 1 .
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5.1. Best Solutions Rule for Optimization Problems with Density f

For comparison we also examined two probability distributions with linearly increasing
(i for increasing) and decreasing (d for down) density function, namely

i(x) :=

{
2x for 0 ≤ x ≤ 1 ,

0 for x < 0 or x > 1
and d(x) :=

{
2− 2x for 0 ≤ x ≤ 1 ,

0 for x < 0 or x > 1 .

In fact, the decreasing distribution is not discussed explicitly since maximizing the in-
creasing distribution provides the same Cordel frequency as minimizing the decreasing
distribution.

Finally, the centered triangular distribution, which is a combination of the increasing
and decreasing distribution, was considered.

t(x) :=


4x for 0 ≤ x ≤ 1

2

4− 4x for 1
2
≤ x ≤ 1

0 for x < 0 and x > 1

The corresponding cumulative distribution functions are to be found in Appendix L
on page 239. The figures below show the graphs of the density functions.

x

1

0 1

2

f(x)

u(x)

(a) uniform distribution

x

1

0 1

2

f(x)

i(x)

d(x)

(b) increasing and decreasing
distribution

x

1

0 1

2

f(x)

t(x)

0.5
(c) triangular distribution

Before we compute the Cordel frequencies for these three distributions we give thought
to the integration intervals. The equation

CFf,min(n) =
n!

(n− 3)!

∫ ∞
−∞

f (v3) (1− F (v3))n−3

∫ v3

−∞
f (v2)F (2v2 − v3) dv2 dv3

=
n!

(n− 3)!

∫ 1

0

f (v3) (1− F (v3))n−3

∫ v3

v3
2

f (v2)F (2v2 − v3) dv2 dv3 .

holds since f(x) = 0 for x /∈ [0, 1] and F (2v2 − v3) = 0 for 2v2 − v3 < 0 which is
equivalent to v2 <

v3
2

. Therewith we can compute the Cordel frequencies for the three
distributions.

Uniform Distribution
For minimizing the uniform distribution the Cordel frequency CFu,min(n) = 1

2
arises as

the following computation shows. We used a compact representation where complex
calculation steps may be verified with Maple [Maple 2008], for example.
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CFu,min(n) =
n!

(n− 3)!

∫ 1

0

u (v3) (1− U (v3))n−3

∫ v3

v3
2

u (v2)U(2v2 − v3) dv2 dv3

=
n!

(n− 3)!

∫ 1

0

(1− v3)n−3

∫ v3

v3
2

2v2 − v3 dv2 dv3

=
n!

(n− 3)!

∫ 1

0

(1− v3)n−3 [v2
2 − v3v2

]v3
v2=

v3
2

dv3

=
n!

(n− 3)!

∫ 1

0

(1− v3)n−3

(
v2

3 − v2
3 −

1

4
v2

3 +
1

2
v2

3

)
dv3

=
n!

(n− 3)!
· 1

4

∫ 1

0

(1− v3)n−3 v2
3 dv3

=
1

4

[
−(1− v3)n−2

(
v2

3n
2 + v3n− 3v2

3n− 4v3 + 2v2
3 + 2

)]1
v3=0

=
1

4
· 2 =

1

2

Obviously, the Cordel frequency for maximization and minimization problem has to be
the same in case of the uniform distribution. Thus,

CFu,min(n) = CFu,max(n) =
1

2
.

Increasing Distribution

CFi,min(n) =
n!

(n− 3)!

∫ 1

0

i (v3) (1− I (v3))n−3

∫ v3

v3
2

i (v2) I(2v2 − v3) dv2 dv3

=
n!

(n− 3)!

∫ 1

0

2v3 ·
(
1− v2

3

)n−3
∫ v3

v3
2

2v2 · (2v2 − v3)2 dv2 dv3

=
4 · n!

(n− 3)!

∫ 1

0

v3

(
1− v2

3

)n−3
∫ v3

v3
2

4v3
2 − 4v3v

2
2 + v2

3v2 dv2 dv3

=
4 · n!

(n− 3)!

∫ 1

0

(
1− v2

3

)n−3
[
v4

2 −
4

3
v3v

3
2 +

1

2
v2

3v
2
2

]v3
v2=

v3
2

dv3

=
7

12

n!

(n− 3)!

∫ 1

0

(
1− v2

3

)n−3
v5

3 dv3

=
7

12

[
−1

2
(1− v2

3)n−2
(
v4

3n
2 + 2v2

3n− 3v4
3n− 4v2

3 + 2v2
3 + 2

)]1

v3=0

=
7

12

In analogy the Cordel frequency for maximization problems with density i was com-
puted.
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CFi,max(n)

=
n!

(n− 3)!

∫ 1

0

I (vn−2)n−3 i (vn−2)

∫ 1

vn−2

i (vn−1) (1− I (2vn−1 − vn−2)) dvn−1 dvn−2

=
n!

(n− 3)!

∫ 1

0

2v2n−5
n−2

∫ 1

vn−2

2vn−1 (1− I (2vn−1 − vn−2))︸ ︷︷ ︸
=0 for 2vn−1−vn−2≥1

dvn−1 dvn−2

=
n!

(n− 3)!

∫ 1

0

2v2n−5
n−2

∫ 1
2

+ 1
2
vn−2

vn−2

2vn−1

(
1− (2vn−1 − vn−2)2) dvn−1 dvn−2

=
n!

(n− 3)!

∫ 1

0

2v2n−5
n−2

∫ 1
2

+ 1
2
vn−2

vn−2

−8v3
n−1 + 8v2

n−1vn−2 + 2vn−1

(
1− v2

n−2

)
dvn−1 dvn−2

=
n!

(n− 3)!

∫ 1

0

2v2n−5
n−2

[
−2v4

n−1 +
8

3
v3
n−1vn−2 + v2

n−1

(
1− v2

n−2

)] 1
2

+ 1
2
vn−2

vn−1=vn−2

dvn−2

=
n!

(n− 3)!

∫ 1

0

2v2n−5
n−2

(
7

24
v4
n−2 −

3

4
v2
n−2 +

1

3
vn−2 +

1

8

)
dvn−2

=
n!

(n− 3)!

[
7

24n
v2n
n−2 −

3

4(n− 1)
v2n−2
n−2 +

2

3(2n− 3)
v2n−3
n−2 +

1

8(n− 2)
v2n−4
n−2

]1

vn−2=0

=
n!

(n− 3)!

(
7

24n
− 3

4(n− 1)
+

2

3(2n− 3)
+

1

8(n− 2)

)
=

n!

(n− 3)!
· 4n− 7

4n(n− 1)(n− 2)(2n− 3)

=
4n− 7

4(2n− 3)

n→∞−−−→ 1

2

Thus, CFi,max(n) is strictly monotonic increasing and converges to 1
2

for n→∞.

There is a very considerable difference between this and the previous results. While
the Cordel frequencies for minimization problems with uniform and increasing den-
sity function as well as the Cordel frequency for maximization problems with uniform
density function are both independent of n, the Cordel frequency for maximization
problems with density i depends on n. But we will see that the Cordel frequency for
the centered triangular distributions also depends on n.

Centered Triangular Distribution

For the centered triangular distribution the computation of the Cordel frequency is a
little bit more difficult. Here we have to split the multiple integral into four parts and
add up the values of the four integrals. This interval decomposition is caused by the
density function t of the triangular distribution which is a composite function.
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Thus we get

CFt,min(n) =
n!

(n− 3)!

∫ 1

0

t (v3) (1− T (v3))n−3

∫ v3

v3
2

t (v2)T (2v2 − v3) dv2 dv3

=
n!

(n− 3)!
(Int1 + Int2 + Int3 + Int4)

with

Int1 :=

∫ 1
2

0

4v3 ·
(
1− 2v2

3

)n−3
∫ v3

v3
2

4v2 · 2(2v2 − v3)2 dv2 dv3 ,

Int2 :=

∫ 1

1
2

(4− 4v3) ·
(
2v2

3 − 4v3 + 2
)n−3

∫ 1
2

v3
2

4v2 · 2(2v2 − v3)2 dv2 dv3 ,

Int3 :=

∫ 1

1
2

(4− 4v3) ·
(
2v2

3 − 4v3 + 2
)n−3

∫ 1
4

+
v3
2

1
2

(4− 4v2) · 2 (2v2 − v3)2 dv2 dv3 ,

Int4 :=

∫ 1

1
2

(4− 4v3) ·
(
2v2

3 − 4v3 + 2
)n−3

∫ v3

1
4

+
v3
2

(4− 4v2) ·
(
−2 (2v2 − v3)2 + 4 (2v2 − v3)− 1

)
dv2 dv3 .

These four integrals were not calculated by hand. Adding up the values obtained with
the help of Maple [Maple 2008] (cf. Maple worksheet in Appendix M.1 starting on
page 243) the Cordel frequency

CFt,min(n) =
7

12
− 5n− 3

6 · 2n(2n− 3)

arises. As in the case of the uniform distribution, again the Cordel frequency is the
same for minimization and maximization problems (cf. Appendix M.1 starting on page
243). Thus,

CFt,max(n) = CFt,min(n) =
7

12
− 5n− 3

6 · 2n(2n− 3)

n→∞−−−→ 7

12
.

CFt,min(n) and CFt,max(n) are strictly monotonic increasing in n. But while the Cordel

frequency for maximizing optimization problems with the increasing density i was al-
ways smaller than 1

2
, here, 1

2
≤ CFt,min(n) = CFt,max(n) for n ≥ 3 holds. The limit of

the sequence is 7
12

which is the Cordel frequency of the increasing distribution. This re-
sult was actually to be expected since the left side of the triangular distribution (where
the three best functional values are usually to be found) is an increasing distribution.

Figure 5.1.1 on the next page shows the six computed Cordel frequencies for distribu-
tions on [0, 1] for comparison.
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Figure 5.1.1: Cordel frequencies sorted from high to low: minimize i (green), minimize or
maximize t (black), minimize or maximize u (red), maximize i (blue).

5.1.2 Cordel Frequencies for Distributions on [0,∞)

We considered three distributions on the non-negative real numbers.

� The exponential distribution with parameter λ > 0:

eλ(x) :=

{
λe−λx for x ≤ 0,

0 for x < 0.

� The (re-)normalized positive part of the standard normal distribution:

ϕ(x) :=

{
2 · ϕ(x) = 2√

2π
e−

x2

2 for 0 ≤ x,

0 for x < 0.

This is the same as the density function of the absolute value of a standard normal
random variable.

� The (re-)normalized positive part of the logistic distribution with mean value
µ = 0 and scale parameter s = 1:

ls(x) :=

2 · l(x) = 2e−x/s

s(1+e−x/s)
2 for 0 ≤ x,

0 for x < 0.

This is the same as the density function of the absolute value of a logistic random
variable.
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See Appendix L starting on page 239 for the cumulated distribution functions and
graphs of the density functions.

Exponential Distribution
We compute the Cordel frequency for minimization problems with exponential density
as follows.

CFeλ,min(n) =
n!

(n− 3)!

∫ ∞
0

eλ (v3) (1− Eλ (v3))n−3

∫ v3

v3
2

eλ (v2)Eλ(2v2 − v3) dv2 dv3

=
n!

(n− 3)!

∫ ∞
0

λe−λv3 · e−λv3(n−3)

∫ v3

v3
2

λe−λv2 ·
(
1− e−λ(2v2−v3)

)
dv2 dv3

=
n!

(n− 3)!

∫ ∞
0

λe−λv3(n−2)

∫ v3

v3
2

λe−λv2 − λe−λ(3v2−v3) dv2 dv3

=
n!

(n− 3)!

∫ ∞
0

λe−λv3(n−2)

[
−e−λv2 +

1

3
e−λ(3v2−v3)

]v3
v2=

v3
2

dv3

=
n!

(n− 3)!

∫ ∞
0

λe−λv3(n−2) ·
(
−e−λv3 +

1

3
e−2λv3 +

2

3
e−

1
2
λv3

)
dv3

=
n!

(n− 3)!

∫ ∞
0

−λe−λv3(n−1) +
λ

3
e−λv3n +

2λ

3
e−λv3(n−

3
2) dv3

=
n!

(n− 3)!

[
1

n− 1
e−λv3(n−1) − 1

3n
e−λv3n − 4

6n− 9
e−λv3(n−

3
2)
]∞
v3=0

=
n!

(n− 3)!

(
− 1

(n− 1)
+

1

3n
+

4

6n− 9

)
=

n− 2

2n− 3

n→∞−−−→ 1

2

We see that the Cordel frequency does not depend on the parameter λ of the expo-
nential distribution. Independently of λ, the Cordel frequency is strictly monotonic
increasing in n and converges to 1

2
.

The following Cordel frequency occurs for maximization problems with exponential
density.

CFeλ,max(n) =
n!

(n− 3)!

∫ ∞
0

eλ (vn−2)Eλ (vn−2)n−3∫ ∞
vn−2

eλ (vn−1) (1− Eλ(2vn−1 − vn−2)) dvn−1 dvn−2

=
n!

(n− 3)!

∫ ∞
0

λe−λvn−2
(
1− e−λvn−2

)n−3
∫ ∞
vn−2

λe−λ(3vn−1−vn−2) dvn−1 dvn−2

=
n!

(n− 3)!

∫ ∞
0

λe−λvn−2
(
1− e−λvn−2

)n−3
[
−1

3
e−λ(3vn−1−vn−2)

]∞
vn−1=vn−2

dvn−2

=
n!

(n− 3)!

∫ ∞
0

λ

3
e−3λvn−2

(
1− e−λvn−2

)n−3
dvn−2
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=
n!

(n− 3)!

∫ 1

0

1

3
(1− t)2 tn−3 dt (substitution t := 1− e−λvn−2)

=
n!

3(n− 3)!

[
1

n
tn − 2

n− 1
tn−1 +

1

n− 2
tn−2

]1

t=0

=
n!

3(n− 3)!

(
1

n
− 2

n− 1
+

1

n− 2

)
=

2

3

Again, the Cordel frequency is independent of λ. But in contrast to the minimization
problem now the Cordel frequency is also independent of n.

Normalized Positive Part of the Standard Normal Distribution
Since the cumulative distribution function of the standard normal distribution can only
be evaluated numerically, which holds for the normalized positive part too, the Cordel
frequency cannot be computed exactly. But with the help of Maple [Maple 2008] we
calculated the numerical values for several n. The results are shown in Figure 5.1.2.

Normalized Positive Part of the Logistic Distribution
Again, we were not able to compute the Cordel frequency exactly even though the cu-
mulative distribution function can be computed. Instead we used Maple’s [Maple 2008]
numerical integration for the computation of approximated values.

Figure 5.1.2 shows the precisely calculated Cordel frequencies for optimization problems
with exponential density and the numerical results for the normalized positive part of
the standard normal and logistic distribution.
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Figure 5.1.2: Cordel frequencies sorted from high to low: exponential distribution eλ (blue),
positive part of the logistic distribution l = ls with scale parameter s = 1
(red), positive part of the standard normal distribution n = ϕ (black).
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5.1.3 Cordel Frequencies for Distributions on (−∞,∞)

In addition, not only the normalized positive part of the standard normal distribution
and logistic distribution were considered, but also the underlying complete distributions
on (−∞,∞). But as in the case of the triangular distribution the results will converge
to the Cordel frequencies for maximizing the positive part. That is why we do not
present further results here.

5.1.4 Summary of all Results

Altogether, the following Cordel frequencies sorted from high to low were determined.

CFeλ,max(n) =
2

3

CFi,min(n) =
7

12

CFt,min(n) = CFt,max(n) =
7

12
− 5n− 3

6 · 2n(2n− 3)

CFu,min(n) = CFu,max(n) =
1

2

CFi,max(n) =
4n− 7

8n− 12

CFeλ,min(n) =
n− 2

2n− 3

Additionally, Monte-Carlo Integration for n = 10, 000 lead us to the following conjec-
tures.

(i) CFϕ,max(n),CFϕ,max(n),CFls,max(n), and CFls,max(n) seem to converge strictly

monotonic increasing to 2
3
.

(ii) CFϕ,min(n),CFϕ,min(n),CFls,min(n), and CFls,min(n) seem to converge strictly

monotonic increasing to 1
2
.

It turned out that the Cordel frequency often differs for minimization and maximization
problems of the same distribution which is not surprising. Furthermore, unfortunately
no clear trend (Cordel frequency almost always above ore below 50%) was observable.
But in fact, the proved or suggested limits of the Cordel frequency are all greater than or
equal to 50%. Therewith we come back to the question following Conjecture 5.1.4 (page
96). There we asked, whether each value v ∈ [0, 1] is a possible limit to CFf,max(n) as

n→∞. The following Section 5.1.5 deals with this question a little bit more detailed.
Afterwards in Section 5.1.6 (starting on page 108) we look briefly at the expected values
of the differences d1 and d2.
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5.1.5 Experimental Results for the δ-Distribution

In this section we consider a special type of distributions, called δ-distributions.

Definition 5.1.5 (δ-Distribution)
A δ-distributed optimization problem (δ > 0) is
an maximization problem with density function

fδ(x) =

{
0, for x ≤ 1
δ

x1+δ
for x ≥ 1

as shown in the figure on the right.
x

1

0 31

2

δ = 2

δ = 1

δ = 0.5

By Monte Carlo integration we tried to determine the limit limn→∞CFfδ,max(n) for

various δ > 0. The following Figure 5.1.3 shows the experimentally observed Cordel
frequencies CFfδ,max(100, 000) which are a very good approximation for the real limits.

These experimental considerations show, that the δ-distributed maximization problems
provide limits between 2

3
and 1. It seems, that each value v in the open interval

(
2
3
, 1
)

occurs as the limit of CFfδ,max(n) for a δ > 0. It remains an open problem to compute

the real limits and therewith to prove this observation.
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Figure 5.1.3: Experimentally established limits of the Cordel frequency for δ-distributed
maximization problems.
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But still the question is whether the remaining interval
[
0, 2

3

]
also provides possible

limits for the Cordel frequency. As we saw in the summary in Subsection 5.1.4 on page
106, all proven or suggested limits of the Cordel frequencies were greater than or equal
to 0.5. That makes us conjecture

lim
n→∞

CFf,min ≥
1

2
and lim

n→∞
CFf,max ≥

1

2
.

5.1.6 Expected values E (d1) and E (d2)

With the joint density function of the two smallest values

f1,2:n (v1, v2) =
n!

(n− 2)!
(1− F (v2))n−2 f (v1) f (v2)

one can compute the expected value of the difference d1. Thereby the calculation step
marked with PI is the result of integration by parts.

Ef,min (d1) = n(n− 1)

∫ ∞
−∞

f (v2) (1− F (v2))n−2

∫ v2

−∞
(v2 − v1) f (v1) dv1dv2

= n(n− 1)

∫ ∞
−∞

f (v2) (1− F (v2))n−2[
v2

∫ v2

−∞
f (v1) dv1 −

∫ v2

−∞
v1f (v1) dv1

]
dv2

PI
= n(n− 1)

∫ ∞
−∞

f (v2) (1− F (v2))n−2(
v2F (v2)− [v1F (v1)]v2v1=−∞ +

∫ v2

−∞
F (v1) dv1

)
dv2

= n(n− 1)

∫ ∞
−∞

f (v2) (1− F (v2))n−2

∫ v2

−∞
F (v1) dv1dv2

In analogy, with the help of density function

f2,3:n (v2, v3) =
n!

(n− 3)!
F (v2) (1− F (v3))n−3 f (v2) f (v3)

one computes

Ef,min (d2) =
n!

(n− 3)!

∫ ∞
−∞

f (v3) (1− F (v3))n−3

∫ v3

−∞
(v3 − v2)F (v2)f (v2) dv2dv3 .

Furthermore we compute

Ef,max (d1) := E (Vn:n − Vn−1:n) and Ef,max (d2) := E (Vn−1:n − Vn−2:n)

which represent the differences of the three best functional values for maximization
problems.
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The following expected values for minimization problems are found by inserting the
different density functions.

Eu,min (d1) =
1

n+ 1
Eu,min (d2) =

1

n+ 1

Ei,min (d1) =

√
π

4

n!

Γ
(
n+ 3

2

) Ei,min (d2) =
3
√
π

16

n!

Γ
(
n+ 3

2

)
Eeλ,min (d1) =

1

λ(n− 1)
Eeλ,min (d2) =

1

λ(n− 2)

For maximization problems the following expected values arise:

Eu,max (d1) =
1

n+ 1
Eu,max (d2) =

1

n+ 1

Ei,max (d1) =
2n

4n2 − 1
Ei,max (d2) =

4n(n− 1)

8n3 − 12n2 − 2n+ 3

Eeλ,max (d1) =
1

λ
Eeλ,max (d2) =

1

2λ
.

For the remaining distributions no simple closed formulas have been discovered.

Finally we compare these expected values by considering the quotients

Qf,min :=
Ef,min (d1)

Ef,min (d1) + Ef,min (d2)
and Qf,max :=

Ef,max (d1)

Ef,max (d1) + Ef,,max (d2)
.

Computation leads to the following values.

Qu,min =
1

2
Qu,max =

1

2

Qi,min =
4

7
Qi,max =

2n− 3

4n− 5

Qeλ,min =
n− 2

2n− 3
Qeλ,max =

2

3

Remark 5.1.6
In case of the uniform and in case of the exponential distribution the ratio of the
expected values is exactly the Cordel frequency. It holds

Qu,min = CFu,min, Qu,max = CFu,max,

and Qeλ,min = CFe,min, Qeλ,max = CFe,max.

But for the increasing distribution Qeλ,min 6= CFeλ,min and Qeλ,max 6= CFeλ,max hold.

With this interesting observation we finish this section on the Cordel frequency for
optimization problems with density f . The next section deals with the Cordel frequency
for random Σ-type problems.
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5.2 Best Solutions Rule for

Random General Σ-Type Problems

Since we considered many general Σ-type problems (see examples in Appendix H start-
ing on page 205) we want to present exactly computed Cordel frequencies for “random
general Σ-type problems ”, as well. These problems are defined as follows.

Definition 5.2.1 (Random General Σ-Type Problem)
Given n random independent coefficients c1, . . . , cn > 0 for some n ≥ 1 we call the
discrete optimization problem

min
x1,...,xn∈N0

n∑
i=1

cixi (5.6)

a random general Σ-type problem.

From now on we make the assumption: n ≥ 3.

Since all coefficients ci are positive, the optimal solution to (5.6) is x(0) = (0, . . . , 0)
with f0 := f

(
x(0)
)

= 0. The second-best solution x(1) is then given by

x
(1)
i =

{
1, for i = i∗

0, for i 6= i∗

where i∗ is an index with ci∗ = min {c1, . . . , cn}. Again we use the notation from order

statistics (cf. [ABN 1992]). Thus, with 0 < c1:n ≤ c2:n ≤ . . . ≤ cn:n the second-
best solution of the random Σ-type problem (5.6) is given by x(1) = (1, 0, . . . , 0) with
f1 := f

(
x(1)
)

= c1:n. But for the third-best solution x(2) there are two possibilities:

either x(2) = (2, 0, . . . , 0) with functional value 2c1:n or x(2) = (0, 1, 0, . . . , 0) with func-
tional value c2:n. Hence, f2 := f

(
x(2)
)

= min {2c1:n, c2:n} holds.

In summary,

f0 = 0 , f1 = c1:n , and f2 = min {2c1:n, c2:n} (5.7)

hold.

5.2.1 Cordel Frequencies for Different Distributions

With (5.7) one simply proves the following corollary.

Corollary 5.2.2
Given a random Σ-type problem with the three best functional values f0 ≤ f1 ≤ f2,

d1 := |f0 − f1| ≥ |f1 − f2| =: d2

is always fulfilled.
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5.2. Best Solutions Rule for Random General Σ-Type Problems

Thus, the Cordel Frequency for random Σ-type problems with n randomly generated
independent coefficients c1, . . . , cn and the best solutions rule is

CF(n) := P (d1 ≥ d2) = 1

independently from n and the distribution of C1, . . . , Cn.

Proof. After the preliminary considerations we easily check:

CF(n) : = P (|f0 − f1| ≥ |f1 − f2|) = P (f1 − f0 ≥ f2 − f1)

= P
(
C1:n − 0 ≥ min {2C1:n, C2:n} − C1:n

)
= P

(
2C1:n ≥ min {2C1:n, C2:n}

)
= 1 . �

Now we go a step further and investigate how much influence the equality d1 = d2 has
on the Cordel Frequency. Or to be more precise, we want to compute the probability
that d1 > d2 holds. Obviously, the following equation is true.

P (d1 > d2) = P
(

2C1:n > min {2C1:n, C2:n}
)

= P (2C1:n > C2:n)

Thus, we can compute the probability by evaluating the following multiple integral.

P (d1 > d2) = P (2C1:n > C2:n) =

∫ ∞
0

∫ 2c1

c1

f1,2:n (c1, c2) dc2 dc1

with

f1,2:n (c1, c2) = n(n− 1) (1− F (c2))n−2 f (c1) f (c2) .

As in the previous section, choosing the appropriate order of integration simplifies the
multiple integral.

P (d1 > d2) = n(n− 1)

∫ ∞
0

(1− F (c2))n−2 f (c2)

∫ c2

c2
2

f (c1) dc1 dc2

= n(n− 1)

∫ ∞
0

(1− F (c2))n−2 f (c2)
(
F (c2)− F

(c2

2

))
dc2

On the following pages we present the results for some distributions. In Appendix M.2
starting on page 250 the corresponding Maple worksheets [Maple 2008] with all results
can be found.

Uniform Distribution on [0, 1]

Pu (d1 > d2) = n(n− 1)

∫ 1

0

(1− U (c2))n−2 u (c2)
(
U (c2)− U

(c2

2

))
dc2

= n(n− 1)

∫ 1

0

(1− c2)n−2
(
c2 −

c2

2

)
dc2
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=
n(n− 1)

2

∫ 1

0

c2 (1− c2)n−2 dc2

=
n(n− 1)

2

[
− (c2(n− 1) + 1) (1− c2)n−1

n(n− 1)

]1

c2=0

=
1

2

Increasing Distribution on [0, 1]

Pi (d1 > d2) = n(n− 1)

∫ ∞
0

(1− I (c2))n−2 i (c2)
(
I (c2)− I

(c2

2

))
dc2

=
3n(n− 1)

2

∫ 1

0

c3
2

(
1− c2

2

)n−2
dc2

=
3n(n− 1)

2

[
− (1 + c2

2n− c2
2) (1− c2

2)
n−1

2n(n− 1)

]1

c2=0

=
3

4

Decreasing Distribution on [0, 1]

Pd (d1 > d2) = n(n− 1)

∫ 1

0

(1−D (c2))n−2 d (c2)
(
D (c2)−D

(c2

2

))
dc2

= n(n− 1)

∫ 1

0

(
c2

2 − 2c2 + 1
)n−2

(2− 2c2)

(
2c2 − c2

2 − c2 +
c2

2

4

)
dc2

= 2n(n− 1)

∫ 1

0

(1− c2)2n−3

(
c2 −

3

4
c2

2

)
dc2

= 2n(n− 1)

(∫ 1

0

c2 (1− c2)2n−3 dc2 −
3

4

∫ 1

0

c2
2 (1− c2)2n−3 dc2

)
PI
= n

(∫ 1

0

(1− c2)2n−2 dc2 −
3

2

∫ 1

0

c2 (1− c2)2n−2 dc2

)
PI
= n

([
−1

2n− 1
(1− c2)2n−1

]1

c2=0

− 3

2 (2n− 1)

∫ 1

0

(1− c2)2n−1 dc2

)

=
n

2n− 1
+

3n

2 (2n− 1)

[
1

2n
(1− c2)2n

]1

c2=0

=
n

2n− 1
− 3

4 (2n− 1)
=

4n− 3

8n− 4

n→∞−−−→ 1

2

The calculation steps marked with PI are the results of integration by parts. The
probability converges strictly monotonic increasing in n to 1

2
.
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Centered Triangular Distribution on [0, 1]

Splitting up the multi integral leads to

Pt (d1 > d2) = n(n− 1)

∫ 1

0

(1− T (c2))n−2 t (c2)
(
T (c2)− T

(c2

2

))
dc2

= n(n− 1) (Int1 + Int2)

with

Int1 : =

∫ 1
2

0

(
1− 2c2

2

)n−2 · 4c2 ·
(

2c2
2 −

c2
2

2

)
dc2

=
3

4n(n− 1)
− 3(n+ 1)

2n+2 · n(n− 1)

and Int2 : =

∫ 1

1
2

(
2− 4c2 + 2c2

2

)n−2 · (4− 4c2) ·
(
−2c2

2 + 4c2 − 1− c2
2

2

)
dc2

=
6n2 + 3n− 5

2n+2 · n(n− 1)(2n− 1)
.

Thus,

Pt (d1 > d2) = n(n− 1) (Int1 + Int2) =
3

4
− 1

2n+1 (2n− 1)

n→∞−−−→ 3

4

holds, which converges strictly monotonic increasing to 3
4
.

Exponential Distribution with Parameter λ > 0

Peλ (d1 > d2) = n(n− 1)

∫ ∞
0

(1− Eλ (c2))n−2 eλ (c2)
(
Eλ (c2)− Eλ

(c2

2

))
dc2

= n(n− 1)

∫ ∞
0

e−λc2(n−2) · λe−λc2
(
−e−λc2 + e−

1
2
λc2
)

dc2

= n(n− 1)

(∫ ∞
0

λe−λc2(n−
1
2) dc2 −

∫ ∞
0

λe−λc2n dc2

)

= n(n− 1)

([
−1

n− 1
2

e−λc2(n−
1
2)
]∞
c2=0

−
[
−1

n
e−λc2n

]∞
c2=0

)

= n(n− 1)

(
1

n− 1
2

− 1

n

)
=

n− 1

2n− 1

n→∞−−−→ 1

2

Again, the probability converges strictly monotonic in n to 1
2
.
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Summary of all Results

The following Figure 5.2.1 shows all established probabilities.
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(a) P (d1 > d2)
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(b) P (d1 > d2) + 1
2P (d1 = d2)

Figure 5.2.1: P (d1 > d2) sorted form high to low: increasing i (green), triangular t (black),
uniform u (red), decreasing d (blue) and exponential eλ (orange) distribution.

5.2.2 Expected Values E (d1) and E (d2)

With

d1 = c1:n and d2 = min {2c1:n, c2:n} =

{
c1:n, for 2c1:n ≤ c2:n

c2:n − c1:n, for 2c1:n ≥ c2:n

follows

E (d1) =

∫ ∞
0

c1f1:n (c1) dc1 = n

∫ ∞
0

c1 (1− F (c1))n−1 f (c1) dc1 (5.8)

and

E (d2) =

∫ ∞
0

(∫ c2
2

0

c1f1,2:n (c1, c2) dc1 +

∫ ∞
c2
2

(c2 − c1) f1,2:n (c1, c2) dc1

)
dc2

= n(n− 1)

∫ ∞
0

(1− F (c2))n−2 f (c2)

(∫ c2
2

0

c1f (c1) dc1

+

∫ ∞
c2
2

(c2 − c1) f (c1) dc1

)
dc2

(5.9)
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Maple [Maple 2008] computed the following expected values (cf. Appendix M.2 starting
on page 250).

Eu (d1) =
1

n+ 1
Eu (d2) =

1

4(n+ 1)

Ei (d1) =

√
π

2

n!

Γ
(
n+ 3

2

) Ei (d2) =

√
π

16

n!

Γ
(
n+ 3

2

)
Ed (d1) =

1

2n+ 1
Ed (d2) =

n

8n2 − 2

Eeλ (d1) =
1

nλ
Eeλ (d2) =

n

(4n2 − 4n+ 1)λ

Therewith the following quotients Qf :=
Ef (d1)

Ef (d1)+Ef (d2)
occurred.

Qu =
4

5

Qi =
8

9

Qd =
4n− 2

5n− 2

n→∞−−−→ 4

5

Qeλ =
4n2 − 4n+ 1

5n2 − 4n+ 1

n→∞−−−→ 4

5

Observe, that Qf >
1
2

holds for every n ≥ 3 and for every considered distribution.
The following Figure 5.2.2 shows all quotients for comparison.
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Figure 5.2.2: Quotients Qf :=
Ef (d1)

Ef (d1)+Ef (d2) sorted form high to low: increasing i (green),

uniform u (red), decreasing d (blue) and exponential eλ (orange) distribution.
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5.3 Penalty Selection Rule

5.3.1 Uniform Distribution Estimate

In this section we present an estimate by Althöfer, which gives a good hint in which
magnitude Cordel frequencies for the penalty selection rule are to be expected.

In Lemma 2.3.3 on page 35 we determined that penalty alternatives are supported
points in the (w, p) diagram. Thus

(
w
(
P (1)

)
, p
(
P (1)

))
lies inside of the triangle with

vertices(
w
(
P (0)

)
, p
(
P (0)

))
,
(
w
(
P (2)

)
, p
(
P (2)

))
, and

(
w
(
P (0)

)
, p
(
P (2)

))
.

p

w

p
(
P (0)

)

p
(
P (2)

)
w
(
P (0)

)
w
(
P (2)

)

P (0)

P (2)

We call this triangle, which is shown in
the figure on the right, the triangle of
feasible points for P (1). To simplify
notation, we use P (1) as name for the
pair

(
w
(
P (1)

)
, p
(
P (1)

))
, too, and say

that P (1) lies inside of the triangle

4P (0), P (2),
(
w
(
P (0)

)
, p
(
P (2)

))
.

This triangle spanned by P (0), P (2), and
(
w
(
P (0)

)
, p
(
P (2)

))
can be dissected into two

parts: one part where (GeCoP) holds and one part where (GeCoP) does not hold.
Both parts are easy to identify, since (GeCoP) holds, whenever

d1 := w
(
P (1)

)
− w

(
P (0)

)
≥ w

(
P (2)

)
− w

(
P (1)

)
=: d2

⇔ w
(
P (1)

)
≥ 1

2

[
w
(
P (0)

)
+ w

(
P (2)

)]
is fulfilled.

p

w1
2

[
w
(
P (0)

)
+ w

(
P (2)

)]

P (0)

P (2)

(GeCoP) holds

(GeCoP) does not hold

Hence, if P (1) is uniformly distributed in this triangle, then the Cordel frequency is

P (d1 ≥ d2) =
1

4
.
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Likewise, P (di ≥ di+1) = 1
4

holds for every i, for uniformly distributed penalty al-
ternatives P (i) within the triangle of feasible points spanned by P (i−1), P (i+1), and(
w
(
P (i−1)

)
, p
(
P (i+1)

))
. These 25% are indeed the magnitude of our experimentally

observed Cordel frequencies for penalty alternatives.

But in fact it cannot be expected that P (1) is equally distributed in the feasible triangle.
In practice one probably has more than one feasible solution within the triangle, but
only one supported point namely P (1). Hence, P (1) will not be equally distributed. In
the next subsection we try to estimate the real distribution of P (1) inside of the feasible
triangle.

5.3.2 Analysis of the Actual Distribution of P (1)

Inside of the Feasible Triangle

Apart from concrete optimization problems we want to determine the distribution of
P (1) inside of the feasible triangle. Therefore we observe a random instance represented
by n random points in R2. Thus, each random point has a random weight and a ran-
dom penalized part which are independently of another.

Since the penalty alternatives are more or less equivalent to the supported points (cf.
Lemma 2.3.3 on page 35), we studied the distribution of the second-best support point
(when sorting the supported points by weight). As for the penalty method we call the
best supported point (best regarding the weight) P (0), the second-best P (1) and the
third-best supported point P (2). In order to compare the results for different random
instances, the weights and penalized parts were scaled and shifted such that

w
(
P (0)

)
= 0, w

(
P (2)

)
= 1, and p

(
P (0)

)
= 1, p

(
P (2)

)
= 0

hold. This is done by the following transformations

w(B) :=
w(B)− w

(
P (0)

)
w (P (2))− w (P (0))

≥ 0 (5.10)

and

p(B) :=
p(B)− p

(
P (2)

)
p (P (0))− p (P (2))

(5.11)

for all feasible solution B ∈ S.

Example 5.3.1
Consider the following instance with 10 random points in the unit square shown in
Figure 5.3.1 (a). In this example the supported points, which represent the penalty
alternatives, have the following weights and penalized parts:

w
(
P (0)

)
= 0.08 p

(
P (0)

)
= 0.49

w
(
P (1)

)
= 0.24 p

(
P (1)

)
= 0.11

w
(
P (2)

)
= 0.62 p

(
P (2)

)
= 0.05
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w1

p

1

0.62

0.05

0.08

0.49

(a) Original instance with three sup-
ported points marked in red.

w1

p

1

≈ 0.30

≈ 0.14

(b) Instance after the scaling and shift-
ing.

Figure 5.3.1: Illustration of the scaling and shifting done by equations (5.10) and (5.11).

Applying transformations (5.10) and (5.11) it follows:

w
(
P (0)

)
=

0.08− 0.08

0.62− 0.08
= 0 p

(
P (0)

)
=

0.49− 0.05

0.49− 0.05
= 1

w
(
P (1)

)
=

0.24− 0.08

0.62− 0.08
=

8

27
≈ 0.30 p

(
P (1)

)
=

0.11− 0.05

0.49− 0.05
=

3

22
≈ 0.14

w
(
P (2)

)
=

0.62− 0.08

0.62− 0.08
= 1 p

(
P (2)

)
=

0.05− 0.05

0.49− 0.05
= 0

These transformed coordinates are shown in Figure 5.3.1 (b). Observe that only the
lower left corner is shown. The transformed coordinates of the remaining four points
are too big to appear in this section.

In this way we can analyze the distribution of w
(
P (1)

)
and p

(
P (1)

)
for random in-

stances with n points in R2 and at least three supported points. These n random
points are independently distributed with density f : R2 → R≥0, which has to be
predefined. We considered two distributions f . The uniform distribution in the unit
square [0, 1]2 and the standard normal distribution in R2.
Figure 5.3.2 on the previous page shows the experimentally observed histograms for
the uniform distribution (figures on the left) and for the normal distribution (figures
on the right). For each n ∈ {3, 10, 50} we considered 1, 000, 000 random instances.

For random instances with n = 3 uniformly distributed points in the unit square and at
least three supported points (cf. Figure 5.3.2 (a)), P (1) has to be uniformly distributed
within the feasible triangle. But for instances with more than three random points
(n > 3), P (1) is no longer uniformly distributed. Figures 5.3.2 (c) and (e) show, that
P (1) is moving further and further away from the diagonal hypotenuse of the feasible
triangle. It seems that E

(
w
(
P (1)

)
, p
(
P (1)

))
converges to (0, 0) or at least to a point

near (0, 0) for n → ∞. Note that the transformations (5.10) and (5.11) were applied
in order to get these scaled histograms.
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(a) n = 3, uniform distribution
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(b) n = 3, normal distribution
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(c) n = 10, uniform distribution
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(d) n = 10, normal distribution
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(e) n = 50, uniform distribution
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(f) n = 50, normal distribution

Figure 5.3.2: Experimentally established histogram of the joint distribution of w
(
P (1)

)
and

p
(
P (1)

)
for n uniformly distributed points in the unit square (left) and for

n normally distributed points in R2 (right).
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For normally distributed points a different pictures emerges as shown by Figures 5.3.2
(b), (d), and (f). Here the distribution spreads more widely. Furthermore, P (1) is
tending more to the middle of the hypotenuse and not to the edge (0, 0).

These different distributions of P (1) inside of the feasible triangle for uniformly and
normally distributed points, implicate different Cordel frequencies for both distribu-
tions. Figure 5.3.3 shows the experimentally observed frequencies.

While the normal distributions provides frequencies which are very close to 25%, the
Cordel frequency for uniformly distributed points seems to converge to approximately
14% for n → ∞. These experimentally observed frequencies are presented in the fol-
lowing Figure 5.3.3.
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Figure 5.3.3: Experimentally established Cordel frequencies for n normally distributed
points in R2 (red) or n uniformly distributed points in the unit square (blue).

These Cordel frequencies have the same order of magnitude as the experimentally
observed Cordel frequencies for random optimization problems presented in Chapter 3
(starting on page 67) and Appendix J (starting on page 211). Hence, the results from
Chapter 3 may be explained with this model and are therefore not surprising.
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Chapter 6

Open Problems and Conclusions

6.1 Open Problems and Future Work

Chapter 1: The Cordel Property
1. We first introduced the Cordel frequency for chess. In this context we suggested

three selection rules – the best moves rule (probably the most evident selection
rule) and the best move per piece as well as the best move per piece type rule
(cf. Definition 1.2.12 on page 8). It could be interesting to think of further
selection rules and to compare the Cordel frequencies they yield with the Cordel
frequencies presented in this doctoral dissertation.

2. In Definition 1.3.3 on page 12 we gave our definition for the Cordel frequency for
chess. While we considered for WWW- and LLL-instances the generalized Cordel
property

d1 := |f (m1)− f (m2)| ≥ |f (m2)− f (m3)| =: d2 , (GeCoP)

which takes the values f (m1) , f (m2) , and f (m3) into account, the remaining
chess positions were divided into Cordel and non-Cordel positions without re-
gards to concrete values (cf. table on page 12).

In contrast to this one could also consider the frequencies for the following ap-
proaches:

a) One could think of a definition of the Cordel frequency where concrete val-
ues of moves (distance to mate) are never considered. In this case only the
game theoretical values (W, D, or L) are regarded. This leads to the follow-
ing division.

Cordel positions non-Cordel positions

W, D, L -
WD, WL, DL WW, DD, LL
WWW, WDD, WDL, WLL, DDD,
DLL, LLL

WWD, WWL, DDL

This approach increases the Cordel frequencies under the best moves rule to
somewhere between a stunning 94% and 97% (for k ∈ {3, 4, 5} pieces).
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6. Open Problems and Conclusions

b) Remember that we call two W-moves (or L-moves) m1 and m2 equally good,
iff f (m1) = f (m2) holds. This definition suggests the consideration of the
following Cordel- and non-Cordel division where m1,m2, and m3 denote the
three moves chosen by the selection rule.

Cordel positions non-Cordel positions

W, D, L -
WD, WL, DL DD
WW and LL with

f (m1) 6= f (m2)
WW and LL with

f (m1) = f (m2)
WWW and LLL with

f (m1) 6= f (m2)
or f (m1) = f (m2) = f (m3)

WWW and LLL with
f (m1) = f (m2) 6= f (m3)

WWD and WWL with
f (m1) 6= f (m2)

WWD and WWL with
f (m1) = f (m2)

WDD, WDL, WLL, DDD, DLL, DDL

A more detailed analysis of Cordel frequencies for these two approaches might be
interesting. One could find more interpretations of Cordel’s Three Moves Law.

3. The extensive tables in Appendices D (pp. 139-154), E (pp. 159-174), and F (pp.
179-194) provide a very detailed overview of the Cordel frequencies for each piece
distribution with k ∈ {3, 4, 5} pieces. An interesting question is whether chess
masters can draw further conclusions from these datasets.

4. On page 17 at the end of Subsection 1.3 we speculate about the Cordel frequencies
for chess positions with more then six pieces, k > 6. It remains an open question
whether all Cordel frequencies CF(k), k ≤ 32, are greater than 50% under the
best moves rule actually. The same question arises for the best move per piece
and for the best move per piece type rule.

Chapter 2: The Penalty Method for General Sum-Type Problems
5. With Definition 2.2.2 on page 23 we gave a generalized definition of Schwarz’s

penalty method [Sch 2003, pp. 7-8] which works for general Σ-type problems
(instead of just Σ-type problems which Schwarz considered). Besides, Schwarz
[Sch 2003, p. 15] also introduced the “Linear Programming Penalty Method”
which later on became called the “Mutual Penalty Method”. It remains an open
question what a general mutual penalty method for general Σ-type problems
would look like.

6. In Definition 2.2.7 on page 28 we presented a canonical penalty vector for general
Σ-type problems where all non-zero weights wi 6= 0, i ∈ {1, . . . , n} have the same
sign (all positive or all negative). Though this restriction was satisfied in all the
optimization problems we considered, it might be good to have a definition of a
canonical penalty vector in mind without sign restrictions on the weights.

7. Definition 2.3.6 on page 37 gave a definition of the k best penalty alternatives
which explicitly excluded degenerate penalty alternatives (alternatives which are
optimal only for a single ε > 0). As we noted in Remark 2.4.1 this exclusion
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6.1. Open Problems and Future Work

of degenerate penalty alternatives is especially important when computing the k
best penalty alternatives, since one needs an algorithm that computes all optimal
solutions to a punished problem

min
B∈S

w(B) + ε · p(B)

in order to compute all the degenerate penalty alternatives, too. But since most
common optimization algorithms compute only one solution to a given optimiza-
tion problem this would cause problems. It is an open question whether this
exclusion of degenerate penalty alternatives affects the Cordel frequency or not.

Chapter 3: Experimentally Observed Cordel Frequencies under the
Penalty Selection Rule

8. Which further optimization problems are interesting to study and which Cordel
frequencies do they yield?

9. In Subsection 3.3.2 (pp. 75-76) the Cordel frequencies for the shortest path
problem in road networks with real travel times in all US-States were presented.
Since these frequencies varied between 15% and 42% we asked at the end of the
subsection if there are simple properties of the given graphs influencing the Cordel
frequencies. Such properties could be, for example, the number of vertices and
edges of the graph or the maximal or average node degree.

10. While we were able to give an construction scheme to every difference vector d =
(d1, . . . , dk) ∈ Rk

>0 and threshold parameter vector ε = (ε1, . . . , εk) with 0 < ε1 <
. . . < εk for the shortest path problem in grid graphs, our investigations for the
minimum spanning tree problem were only partially successful. For the knapsack
problem, where we did not find any construction scheme, we even suggest that
there might be difference vectors d for which no knapsack instance exists. Here,
further examinations are necessary in order to decide, whether this last conjecture
is really true or not. If one finds a construction scheme for each difference vector
d ∈ Rk

>0, this conjecture would be disproved. But initially it might be good to
have a construction scheme at least for difference vectors d with certain properties
(for example d1 < d2 < · · · < dk).

11. On page 85 we presented some suggested limits for the Cordel frequency under
the penalty selection rule for the unbounded knapsack problem. Here, further
investigations for supporting or refuting these suggestions are necessary.

Chapter 4: The Cordel Frequency under the Best Solutions Rule
12. Since we only considered two types of optimization problems for the best solutions

rule, it would be good to analyze more problems. This would help in order to
decide if the results for the shortest path problem and for the minimum spanning
tree problem are really characteristic, as we believe them to be.

Chapter 5: Theoretical Models
13. In Subsection 5.1.5 (pp. 107-108) we presented the δ-distribution and experi-

mentally observed limits for the Cordel frequency for δ-distributed optimization
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6. Open Problems and Conclusions

problems. We suggested that every value in the open interval
(

2
3
, 1
)

occurs as the
limit of CFfδ,max(n) for at least one δ > 0. It remains an open problem to prove

this by analytic investigations.

Furthermore we conjectured that

lim
n→∞

CFf,min ≥
1

2
and lim

n→∞
CFf,max ≥

1

2

hold. To provide a distribution function fl for each limit l ∈
[

1
2
, 1
]

would be
sufficient to prove this conjecture.

14. In Section 5.3 (page 116-120) we presented an estimate for the Cordel frequency
under the penalty selection rule considering the so-called feasible triangle where
P (1) (used as an abbreviation for the pair

(
w
(
P (1)

)
, p
(
P (1)

))
, too) is to be found.

Consideration of different distributions of P (1) inside of this triangle led to es-
timates between 14% and 25% for the Cordel frequency. It remains an open
question what the actual distribution of P (1) inside of this feasible triangle looks
like for concrete types of optimization problems.

6.2 Conclusion

Oskar Cordel’s Three Moves Law for chess from 1913 provided the basis for this doc-
toral dissertation. Up to now, there have been no investigations on this law as far as
we know. Because of that our aim was to lay the foundation for further investigations
on this law and to gain a first impression whether a similar law can be applied for
discrete optimization problems, too.

We started our investigations with the introduction of the generalized Cordel prop-
erty (GeCoP) for chess (cf. Definition 1.2.8, p. 7), which is a mathematical general-
ization of Cordel’s Three Moves Law. In order to investigate how many chess positions
fulfill the generalized Cordel property, the Cordel frequency was introduced. A
Cordel frequency of 100% implies that our interpretation of the Three Moves Law is
valid in every chess position and a Cordel frequency of 0% means that it is never valid.
With the help of Bleicher [Ble 2005] we were able to examine all chess endgames with
at most 5 pieces (including kings). It has been shown that the Cordel frequency for
chess endgames is between 75% and 85% and therefore considerably greater than 50%.
As a first very important result we conclude that Oskar Cordel’s Three Moves Law is
a good rule of thumb, at least in chess endgames even though the magnificent 100% is
not reached at all.
But we did not only determine how often (GeCoP) holds for the three best moves.
By the introduction of selection rules we gave a very general definition of the Cordel
frequency which allowed us, for example, to even compute the Cordel frequency for
the three best moves of distinct chess pieces, for example. This doctoral dissertation
provides very detailed results for every piece distribution (for example two kings and
one rook) which might give chess masters the possibility of drawing further conclusions
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6.2. Conclusion

for endgame theory.

The results for chess, which provided a Cordel frequency considerably greater than
50%, confirmed us that there is really something like a Three Moves Law in chess.
This has led us to go a step further and to introduce the Cordel frequency for opti-
mization problems. In analogy to chess, where not only the three best moves but also
generalizations have been considered, we proposed two selection rules for optimization
problems:

� the obvious best solutions rule which actually chooses the three best feasible
solutions

� and the penalty selection rule which chooses the optimal solution and two good
alternative solutions which should sufficiently differ from the optimal solution.

The penalty selection rule was well-studied already for a specific type of optimization
problems. However, we were able to present a generalized penalty method which is ap-
plicable to even more optimization problems! It has been shown that still all important
properties of the penalty method (as for example the monotonicity) hold. Furthermore,
we introduced the new concept of ranking and numbering penalty alternatives which
allows us to refer to the k best penalty alternatives.

∞0
ε0 ε1 ε2 ε3

P (0) = B(0)

optimal solution

f
(
P (0)

)
P (1)

2nd best penalty alternative

f
(
P (1)

)
P (2)

3rd best penalty alternative

f
(
P (2)

)
. . .

d1 ≥ ? d2

Figure 6.2.1: Schematic representation of the numbering of penalty alternatives. The red
criterion shows the generalized Cordel property (GeCoP).

This approach has one decisive advantage: The former concept of the penalty method
intended to compute the penalty alternative to a predefined penalty parameter ε > 0.
This procedure might lead to penalty alternatives which are

� either equal to the optimal solution (if ε was too small)

� or bad with respect to the objective function (if ε was too large)

and, thus, in both cases useless. By considering the k best penalty alternatives we pre-
vent these troubles caused by this difficult choice of an appropriate penalty parameter
ε. The second best penalty alternative will never be equal to the optimal solution and
the second best penalty alternative will always have the best functional value of all non
degenerate penalty alternatives differing from the optimal solution.

With an adaption of Schwarz’s algorithm we were able to give a method for computing
these k best penalty alternatives. Additionally, we proposed several approaches for
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6. Open Problems and Conclusions

reducing the run time of this basic algorithm. It was found that left-first-traversal is
the most powerful tool which can reduce the run time by up to 80% (five times faster)
and maybe even more. This allows us to compute the three best penalty alternatives,
which are needed for the experimental determination of the Cordel frequency, really
fast.

Comprehensive experimental investigations showed, that typical Cordel frequencies
under the penalty selection rule are between 15% and 30%. This means that discrete
optimization problems under the penalty selection rule are in some measure non-Cordel.

Of course, a very important question is whether it is useful to check the validity of a
chess rule of thumb for optimization problems. Anyway, the Cordel frequency provides
information on the usefulness of penalty alternatives. As the Cordel frequency under
the penalty selection rule was defined as

CF := Pr (d1 ≥ d2) ,

a Cordel frequency which is much smaller than 50% means that mostly d1 < d2 holds.
Consequently, the third best penalty alternative is significantly worse than the second
best penalty alternative. Applied to the former penalty method this could mean that
one should assure that the penalty parameter ε is not chosen too large, since that
entails penalty alternatives whose functional value is usually significantly worse than
the functional values of penalty alternatives to smaller penalty parameters ε.

After this extensive analysis of the Cordel frequency under the penalty selection rule,
the best solutions rule was not examined as detailed. The problem is that only for
some type of optimization problems specific, fast algorithms exist which compute the
three best solutions. Instead, for most optimization problems current algorithms allow
only the investigation of very few, small instances. Our results suggest that typical
Cordel frequencies are about 50%. Hence, again no Cordel property can be shown.

Contrary to what we suggested up to now, indeed the Cordel property occurred for
some optimization problems. But we believe that what we call typical optimization
problems usually do not show a Cordel behavior. Whenever Cordel frequencies con-
siderably greater that 50% have been observed, a special property of the optimization
problem was the reason for that. It might be interesting to study more optimization
problems in order to support or refute our beliefs.

We also tried to substantiate our claims by the computation of the Cordel frequency
under some theoretical assumptions. This approach was successful in the case of the
penalty selection rule. Indeed, the estimate yielded frequencies between 14% and 25%.
This is exactly the range of the frequencies that we called typical Cordel frequencies
under the penalty selection rule before!

Altogether, it turned out that the investigation of the Cordel frequency is a really
interesting field of research where many questions are still open. Especially, there is
a lot of scope for interpretations and applications of the results. Here, more work is
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needed to really find out what the results presented here mean in practice. We are
convinced that future research will fill this gap.

6.3 Oskar Cordel’s Three Moves Law Might be All

Around

We conclude this final chapter with the provocative thesis

“Oskar Cordel’s Three Moves Law might be all around –
one only has to search for it!”

and some suggestions where else Oskar Cordel’s Three Moves Law might be found.

1. Since the Three Moves Law was originally meant for chess, it seems obvious to
examine other games.

2. We also analyzed the distance between the results of the three best teams in the
german soccer national league “Fußball Bundesliga” in the years 1963-2010. Here
the Cordel frequency was 52%. This is in fact a very poor result telling us that
the Three Moves Law cannot be transferred to soccer. But what about other
games and leagues? Having for example a non-Cordel behavior for sport leagues
would mean that there are usually exactly two best teams fighting for the title.
Of course it might be exciting to explore this.

3. Althöfer had the funny idea of questioning search engines like Google and Bing
for the German phrases “einen Wunsch frei”, “zwei Wünsche frei”, “drei Wünsche
frei”. We also searched for their English translations “grant a wish”, “grant two
wishes”, “grant three wishes”. The following number of results occured:

Google Bing

“einen Wunsch frei” ≈ 3, 300, 000 results ≈ 36, 200 results
“zwei Wünsche frei” ≈ 251, 000 results ≈ 3, 980 results
“drei Wünsche frei” ≈ 689, 000 results ≈ 38, 300 results
“grant a wish” ≈ 1, 850, 000 results ≈ 55, 300 results
“grant two wishes” ≈ 25, 500 results ≈ 4, 980 results
“grant three wishes” ≈ 837, 000 results ≈ 13, 700 results

Both search engines provided significantly fewer results for the request with “two”
(“zwei”) than for one and three. Of course one should think about if this result
is really due to the Cordel property.

4. Where else could you imagine to find Cordel’s Three Moves Law? Go out and
search for it!
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Appendix A

Original German Text
by H. Ranneforth

Refers to page 1.

Quotation from [Cor 1913]: “An dieser Stelle sei folgendes bemerkt: Auf Grund jahre-
langer stellte Cordel folgendes, wie er es nannte:

”
Dreizügegesetz“, auf. In einer be-

liebigen Position gibt es entweder nur einen, besten Zwangszug, oder aber drei etwa
gleichwertige Züge. Dieses Gesetz, so lehrte er, übe eine vorzügliche Kontrolle aus über
die Richtigkeit irgend einer Wendung im Schachspiel. Es habe für ihn namentlich da
Klarheit geschaffen, wo in den Lehrbüchern steht, daß die Untersuchungen noch nicht
abgeschlossen seien, wie im Evansgambit, Giuoco piano, Englischen Springerspiel u.
dgl. mehr. Lagen zwei anscheinend etwa gleichwertige Fortsetzungen vor, so war er
davon überzeugt, daß entweder eine falsch, oder noch eine dritte vorhanden sein müsse,
und er ließ dann nicht locker, bis Klarheit geschaffen war. Die Vorarbeiten für ein Buch
über dies

”
Dreizügegesetz“ waren bereits weit vorgeschritten. Auch hier hat ihm der

Tod die Feder aus der Hand genommen.”
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Appendix B

An Example Textfile: King Plus
Knight Versus King Plus Pawn

Refers to page 12.

Cordel_knkp_wtm.txt

Cordel Codes

WWW: 23 0.000488918 %

WWD: 38 0.000807777 %

WWL: 0 0 %

WDD: 147 0.00312482 %

WDL: 0 0 %

WLL: 0 0 %

DDD: 3598295 76.49 %

DDL: 209730 4.45829 %

DLL: 286701 6.09449 %

LLL: 608288 12.9306 %

WW: 0 0 %

WD: 0 0 %

WL: 0 0 %

DD: 415 0.00882178 %

DL: 361 0.00767389 %

LL: 56 0.00119041 %

W: 0 0 %

D: 110 0.0023383 %

L: 100 0.00212573 %

CM: 2 4.25146e-05 %

SM: 0 0 %

Number of moves

0 moves: 2 4.25146e-05 %

1 moves: 210 0.00446403 %

2 moves: 832 0.0176861 %

3 moves: 7344 0.156114 %

4 moves: 10954 0.232852 %

5 moves: 84969 1.80621 %

6 moves: 114502 2.434 %

7 moves: 308395 6.55565 %

8 moves: 416548 8.85469 %
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B. An Example Textfile: King Plus Knight Versus King Plus Pawn

9 moves: 637431 13.5501 %

10 moves: 423773 9.00827 %

11 moves: 813642 17.2958 %

12 moves: 569569 12.1075 %

13 moves: 527467 11.2125 %

14 moves: 365460 7.76869 %

15 moves: 203374 4.32318 %

16 moves: 219794 4.67223 %

Average number of moves: 10.8351

Number of positions: 4704266

WWW delta_1 > delta_2: 6

WWW delta_1 = delta_2: 8

WWW delta_1 < delta_2: 9

LLL delta_1 > delta_2: 128418

LLL delta_1 = delta_2: 278929

LLL delta_1 < delta_2: 200941

WWW Sum delta_1: 14

WWW Sum delta_2: 20

LLL Sum delta_1: 367639

LLL Sum delta_2: 419738
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Appendix C

Some Chess Examples

Refers to page 12.

WWW-Example with d1 > d2

8 0SKZ0Z0Z
7 ZpZ0Z0Z0
6 kZ0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 ZPZ0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 1RK5/1p6/k7/8/8/1P6/8/8 w - - 0 1

Move Value
Rb8xb7 Win in 5
Kc8-c7 Win in 12
b3-b4 Win in 13
Kc8-d8 Win in 13
Kc8-d7 Win in 13
Rb8-a8 Win in 14

WWW-Example with d1 = d2

8 0ZRJ0Z0Z
7 Z0Z0Z0Z0
6 0ZPj0Z0Z
5 Z0ZpZ0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 2RK4/8/2Pk4/3p4/8/8/8/8 w - - 0 1

Move Value
c6-c7 Win in 8
Rc8-c7 Win in 12
Kd8-e8 Win in 16
Rc8-b8 Win in 18
Rc8-a8 Win in 18
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WWW-Example with d1 < d2

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0O0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0ZbZkZ0
2 0Z0Z0Z0Z
1 JBZ0Z0Z0

a b c d e f g h
�

FEN: 8/8/1P6/8/8/3b1k2/8/KB6 w - - 0 1

Move Value
Bb1xd3 Win in 11
b6-b7 Win in 12
Ka1-b2 Win in 23
Ka1-a2 Win in 25
Bb1-a2 Draw
Bb1-c2 Draw

WWD-Example

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 OpZ0Z0Z0
2 0Z0j0Z0Z
1 SKZ0Z0Z0

a b c d e f g h
�

FEN: 8/8/8/8/8/Pp6/3k4/RK6 w - - 0 1

Move Value
Kb1-b2 Win in 11
a3-a4 Win in 11
Ra1-a2 Draw

WWL-Example

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZkZ0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 JPZ0Z0Z0
2 Ro0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/8/2k5/8/8/KP6/Rp6/8 w - - 0 1

Move Value
Ra2xb2 Win in 11
Ka3xb2 Win in 12
Ka3-b4 Loss in 37
Ka3-a4 Loss in 34
b3-b4 Loss in 26
Ra2-a1 Loss in 6
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WDD-Example

8 0Z0Z0Z0j
7 Z0Z0Z0Z0
6 0Z0ZPZ0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 J0Z0Z0Z0

a b c d e f g h
�

FEN: 7k/8/4P3/8/8/8/8/K7 w - - 0 1

Move Value
e6-e7 Win in 10
Ka1-b1 Draw
Ka1-a2 Draw
Ka1-b2 Draw

WDL-Example

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZkZ0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 J0Z0Z0Z0
2 RO0o0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/8/2k5/8/8/K7/RP1p4/8 w - - 0 1

Move Value
Ra2-a1 Win in 15
Ka3-b4 Draw
b2-b3 Loss in 88
b2-b4 Loss in 29
Ka3-b3 Loss in 28
Ka3-a4 Loss in 28

WLL-Example

8 0Z0Z0Z0Z
7 Z0Z0j0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 J0Z0Z0Z0
2 RO0o0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/4k3/8/8/8/K7/RP1p4/8 w - - 0 1

Move Value
Ra2-a1 Win in 14
Ka3-b3 Loss in 85
Ka3-b4 Loss in 85
b2-b3 Loss in 51
Ka3-a4 Loss in 38
b2-b4 Loss in 33
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DDD-Example

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 SPZ0Z0Z0
4 KZ0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZkZ0Z0o
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/8/8/RP6/K7/8/2k4p/8 w - - 0 1

Move Value
Ka4-b4 Draw
Ra5-a7 Draw
b5-b6 Draw
Ra5-a6 Loss in 35
Ra5-a8 Loss in 35
Ka4-a3 Loss in 22

DDL-Example

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 RO0Z0Z0Z
5 J0Z0Z0Z0
4 0Z0Z0Z0Z
3 ZkZ0Z0Z0
2 0Z0ZpZ0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 8/8/RP6/K7/8/1k6/4p3/8 w - - 0 1

Move Value
Ka5-b5 Draw
b6-b7 Draw
Ra6-a7 Loss in 30
Ra6-a8 Loss in 26

DLL-Example

8 0Z0Z0Z0Z
7 Z0ZpZ0Z0
6 0Z0Z0Z0Z
5 Z0ZPZ0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0ZK
2 0Z0Z0Z0o
1 Z0Z0ZkZ0

a b c d e f g h
�

FEN: 8/3p4/8/3P4/8/7K/7p/5k2 w - - 0 1

Move Value
Kh3xh2 Draw
Kh3-h4 Loss in 9
Kh3-g4 Loss in 9
Kh3-g3 Loss in 7
d5-d6 Loss in 6
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LLL-Example with d1 > d2

8 0SKZ0Z0Z
7 Z0Z0Z0Z0
6 0ZkZ0Z0Z
5 Z0Z0Z0Z0
4 0O0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0ZpZ0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: 1RK5/8/2k5/8/1P6/8/4p3/8 w - - 0 1

Move Value
Rb8-b7 Loss in 37
b4-b5 Loss in 35
Kc8-d8 Loss in 34
Rb8-a8 Loss in 25
Rb8-b6 Loss in 8
Rb8-b5 Loss in 8

LLL-Example with d1 = d2

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0l0ZkZ
3 Z0Z0Z0Z0
2 0ZPZ0Z0Z
1 J0Z0A0Z0

a b c d e f g h
�

FEN: 8/8/8/8/3q2k1/8/2P5/K3B3 w - - 0 1

Move Value
Ka1-a2 Loss in 11
Ka1-b1 Loss in 10
c2-c3 Loss in 9
Be1-c3 Loss in 7

LLL-Example with d1 < d2

8 RZKZ0Z0Z
7 Z0Z0Z0Z0
6 Pj0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZpZ0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

FEN: R1K5/8/Pk6/8/8/8/2p5/8 w - - 0 1

Move Value
Ra8-b8 Loss in 39
Kc8-d7 Loss in 31
Kc8-d8 Loss in 23
a6-a7 Loss in 13
Ra8-a7 Loss in 10
Kc8-b8 Loss in 7
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Appendix D

Detailed Results for Chess –
Best Moves Rule

Refers to page 16.

Overview of the results presented in this chapter:

Endgames with 3 pieces
(Section D.1)

Cordel Instances page 140

Non-Cordel Instances page 140

Endgames with 4 pieces
(Section D.2)

Cordel Instances page 141

Non-Cordel Instances page 142

Endgames with 5 pieces
(Section D.3)

Cordel Instances page 144

Non-Cordel Instances page 149

Figures of the results for endgames with 3, 4, or 5 pieces page 155

(Section D.4)

Monte-Carlo results for endgames with 6 pieces page 158

(Section D.5)
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D. Detailed Results for Chess – Best Moves Rule

D.1 Endgames with 3 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkq − − − − − 6% 51% − − 3% − 1% 5% 66%
kkr − − − − − 8% 54% − − 2% − 0% 2% 66%
kpk 45% 8% − − 23% − − 0% − − 0% 0% − 76%
kqk 78% − − − − − − − − − − − − 78%
krk 80% − − − − − − − − − − − − 80%
kkp − − − − 27% 6% 48% − − 0% − 0% 0% 82%
kkb − − − − 95% − − − − − − 1% − 96%
kkn − − − − 97% − − − − − − 1% − 98%
kbk − − − − 100% − − − − − − − − 100%
knk − − − − 100% − − − − − − − − 100%

Mean 20% 1% − − 44% 2% 15% 0% − 0% 0% 0% 1% 84%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkq − − − − 24% − − 10% 34%
kkr − − − − 29% − − 5% 34%
kpk 18% 5% − − − 0% 0% − 24%
kqk 22% − − − − − − − 22%
krk 20% − − − − − − − 20%
kkp − − − 8% 9% − 0% 1% 18%
kkb − − − − − − 4% − 4%
kkn − − − − − − 2% − 2%
kbk − − − − − − − − −
knk − − − − − − − − −

Mean 6% 1% − 1% 6% 0% 1% 2% 16%
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D.2. Endgames with 4 Pieces

D.2 Endgames with 4 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkqr − − − − − − 45% − − − − − 13% 58%
kkqq − − − − − − 39% − − − − − 20% 59%
kkrr − − − − − − 53% − − − − − 8% 60%
kkqb − − − − − 4% 45% − − 3% − 2% 7% 61%
kkqn − − − − − 4% 47% − − 3% − 1% 6% 62%
kkqp − − − − − 1% 58% − − 1% − 0% 6% 66%
kppk 63% 2% − − 2% − − 0% − − 0% 0% − 67%
kkrb − − − − − 6% 55% − − 2% − 0% 4% 67%
kkrn − − − − − 7% 56% − − 2% − 0% 3% 68%
kqkr 66% 1% 1% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 70%
kkbn − − − − 0% 16% 52% − − 1% − 0% 1% 70%
kkrp − − − − − 2% 65% − − 0% − 0% 3% 70%
kpkq 0% 0% 0% 5% 0% 9% 53% 0% 2% 1% 1% 1% 1% 72%
knkq − − − − − 15% 54% − − 3% − 1% 1% 73%
kpkr 0% 8% 1% 5% 6% 8% 43% 0% 0% 0% 0% 0% 0% 73%
kbnk 73% 0% − − 0% − − − − − − − − 74%
krrk 74% − − − − − − − − − − − − 74%
krkq 0% 0% 1% 23% 0% 5% 41% 0% 2% 0% 1% 0% 1% 74%
kkbp − − − − 4% 9% 62% − − 0% − 0% 1% 76%
krkp 64% 3% 1% 1% 8% 0% 0% 0% 0% 0% 0% 0% 0% 76%
knpk 69% 3% − − 4% − − − − − − − − 76%
kknp − − − − 4% 10% 62% − − 0% − 0% 1% 76%
kqkb 75% 1% − − 0% − − 0% − − 0% 0% − 77%
kqkn 76% 0% − − 1% − − 0% − − 0% 0% − 77%
kbkq − − − − 0% 18% 55% − − 3% − 1% 1% 77%
kpkp 18% 8% 1% 2% 25% 6% 19% 0% 0% 0% 0% 0% 0% 77%
kqrk 78% − − − − − − − − − − − − 78%
kbpk 71% 3% − − 4% − − 0% − − 0% − − 78%
kqnk 78% − − − − − − − − − − − − 78%
krpk 79% 0% − − − − − − − − 0% − − 79%
kqkp 78% 0% 0% − 1% − − 0% 0% − 0% 0% 0% 79%
kqpk 79% − − − − − − − − − − − − 79%
kqbk 80% − − − − − − − − − − − − 80%
kkpp − − − − 2% 4% 74% − − 0% − 0% 1% 81%
kkbb − − − − 45% 8% 25% − − 1% − 1% 1% 81%
krnk 81% 0% − − − − − − − − − − − 81%
krbk 82% 0% − − − − − − − − − − − 82%

continued on next page
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D. Detailed Results for Chess – Best Moves Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

krkn 13% 19% − − 52% − − 0% − − 0% 0% − 83%
kqqk 84% − − − − − − − − − − − − 84%
knkr − 0% − − 70% 9% 7% − − 0% − 0% 0% 86%
krkb 2% 23% − − 65% − − 0% − − 0% 0% − 89%
kbbk 39% 0% − − 51% − − − − − − − − 90%
kpkn 10% 14% 0% − 67% 0% − 0% 0% 0% 0% 0% 0% 91%
knkp 0% 0% − − 76% 6% 9% − − 0% − 0% 0% 91%
kqkq 0% 27% 2% 5% 54% 1% 0% 2% 0% 0% 1% 0% 0% 93%
kpkb 4% 15% − − 75% − − 0% − 0% 0% 0% − 94%
krkr 1% 22% 1% 2% 68% 0% 0% 0% 0% 0% 0% 0% 0% 95%
kbkp − 0% − − 85% 6% 4% − − 0% − 0% 0% 95%
kbkr − − − − 91% 2% 2% − − 0% − 0% 0% 95%
kknn − − − − 95% − − − − 0% − 1% − 96%
knkb − 0% − − 99% − − − − − − 0% − 99%
kbkb − 0% − − 99% − − − − − − 0% − 99%
knkn − 0% − − 100% − − − − − − 0% − 100%
kbkn − 0% − − 100% − − − − − − 0% − 100%
knnk − 0% − − 100% − − − − − − − − 100%

Mean 26% 3% 0% 1% 26% 3% 19% 0% 0% 0% 0% 0% 1% 80%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkqr − − − − 19% − − 23% 42%
kkqq − − − − 11% − − 30% 41%
kkrr − − − − 24% − − 16% 40%
kkqb − − − − 23% − − 16% 39%
kkqn − − − − 25% − − 13% 38%
kkqp − − − − 20% − − 13% 34%
kppk 32% 1% − − − 0% 0% − 33%
kkrb − − − − 23% − − 9% 33%
kkrn − − − − 25% − − 8% 32%
kqkr 27% 1% 1% 0% 0% 1% 0% 0% 30%
kkbn − − − 1% 24% − 0% 5% 30%
kkrp − − − − 23% − − 7% 30%
kpkq 0% 0% 0% 0% 20% 0% 0% 7% 28%
knkq − − − 1% 23% − 0% 3% 27%
kpkr 0% 1% 0% 3% 19% 0% 0% 3% 27%
kbnk 25% 1% − − − − − − 26%
krrk 26% 0% − − − − − − 26%

continued on next page
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D.2. Endgames with 4 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

krkq − 0% 2% 0% 21% 0% 0% 2% 26%
kkbp − − − 3% 17% − 0% 4% 24%
krkp 20% 2% 2% 1% 0% 0% 0% − 24%
knpk 22% 2% − − − 0% 0% − 24%
kknp − − − 5% 17% − 0% 2% 24%
kqkb 22% 1% − − − 0% 0% − 23%
kqkn 23% 0% − − − 0% 0% − 23%
kbkq − − − 1% 19% − 0% 3% 23%
kpkp 9% 5% 1% 3% 5% 0% 0% 0% 23%
kqrk 22% − − − − − − − 22%
kbpk 20% 2% − − − 0% − − 22%
kqnk 22% 0% − − − − − − 22%
krpk 21% 0% − − − 0% − − 21%
kqkp 21% 0% 0% 0% − 0% − − 21%
kqpk 21% 0% − − − − − − 21%
kqbk 20% − − − − − − − 20%
kkpp − − − 2% 16% − 0% 2% 19%
kkbb − − − 1% 11% − 4% 4% 19%
krnk 19% 0% − − − − − − 19%
krbk 18% 0% − − − − − − 18%
krkn 7% 9% − − − 0% 0% − 17%
kqqk 16% − − − − − − − 16%
knkr − − − 9% 3% − 1% 1% 14%
krkb 1% 9% − − − 0% 0% − 11%
kbbk 10% 0% − − − − − − 10%
kpkn 5% 3% − 0% − 0% 1% 0% 9%
knkp 0% 0% − 4% 4% − 0% 0% 9%
kqkq 0% 2% 2% 1% 0% 0% 1% 0% 7%
kpkb 2% 2% − 0% − 0% 1% − 6%
krkr 0% 3% 1% 1% 0% 0% 1% 0% 5%
kbkp − − − 4% 1% − 0% 0% 5%
kbkr − − − 2% 1% − 1% 0% 5%
kknn − − − 0% − − 4% − 4%
knkb − − − − − − 1% − 1%
kbkb − − − − − − 1% − 1%
knkn − − − − − − 0% − 0%
kbkn − − − − − − 0% − 0%
knnk − 0% − − − − − − 0%

Mean 8% 1% 0% 1% 7% 0% 0% 3% 20%
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D. Detailed Results for Chess – Best Moves Rule

D.3 Endgames with 5 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkrrb − − − − − − 47% − − − − − 10% 58%
kkqbn − − − − − 0% 47% − − 0% − 0% 11% 58%
kkqrn − − − − − − 43% − − − − − 15% 58%
kkrrn − − − − − − 49% − − − − − 9% 58%
kkqrb − − − − − − 41% − − − − − 17% 58%
kkqqb − − − − − − 33% − − − − − 25% 58%
kkqqn − − − − − − 36% − − − − − 22% 59%
kkqbb − − − − − 1% 43% − − 2% − 1% 12% 59%
kkqrp − − − − − − 46% − − 0% − − 13% 59%
kkqqp − − − − − − 39% − − − − − 20% 59%
kkqbp − − − − − 0% 50% − − 0% − 0% 9% 59%
kkrrr − − − − − − 45% − − − − − 15% 60%
kkrrp − − − − − − 53% − − 0% − − 7% 60%
kkqqr − − − − − − 30% − − − − − 31% 60%
kkqrr − − − − − − 38% − − − − − 23% 61%
kkqqq − − − − − − 22% − − − − − 39% 61%
kkqnp − − − − − 0% 53% − − 0% − 0% 8% 61%
kkqnn − − − − − 3% 46% − − 3% − 1% 8% 62%
kkrbn − − − − − 0% 57% − − 0% − 0% 5% 63%
kpppk 63% 0% − − 0% − − 0% − − 0% 0% − 63%
kpkqq − 0% 0% 0% 0% 0% 49% − 0% 0% 0% 0% 13% 63%
kkrbb − − − − − 3% 53% − − 1% − 0% 6% 63%
kpkqr − 0% 0% 0% 0% 1% 55% 0% 0% 0% 0% 0% 7% 63%
krrkr 60% 3% 0% 0% 1% 0% − 0% 0% 0% 0% 0% 0% 64%
kqrkq 54% 3% 1% 3% 2% 0% 0% 1% 0% 0% 1% 0% 0% 65%
kkrnn − − − − − 6% 54% − − 2% − 0% 4% 66%
kppkp 39% 5% 1% 2% 6% 3% 10% 0% 0% 0% 0% 0% 0% 66%
kpkrr 0% 0% 0% 0% 0% 5% 58% 0% 0% 0% 0% 0% 2% 67%
kkqpp − − − − − 0% 60% − − 0% − 0% 7% 67%
kkrbp − − − − − 0% 63% − − 0% − 0% 4% 67%
kpkqb 0% 0% 0% 0% 0% 9% 50% 0% 0% 3% 0% 1% 3% 68%
kqqkq 62% 4% 0% 0% 1% 0% 0% 0% 0% 0% 1% 0% 0% 68%
kkrnp − − − − − 0% 65% − − 0% − 0% 3% 68%
knkqq − − − − − 0% 58% − − 0% − 0% 10% 68%
kbkqq − − − − − 0% 59% − − 0% − 0% 10% 69%
kqkqq 0% 0% 0% 0% 1% 20% 35% 0% 0% 4% 0% 2% 6% 69%
krrkq 9% 13% 1% 6% 32% 2% 2% 1% 1% 0% 1% 0% 0% 70%

continued on next page
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D.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kpkqn 0% 0% 0% 1% 0% 10% 51% 0% 0% 3% 0% 1% 2% 70%
kpkrb 0% 1% 1% 0% 1% 10% 54% 0% 0% 1% 0% 0% 1% 70%
kqkrp 55% 4% 0% 2% 6% 1% 1% 0% 0% 0% 0% 0% 0% 70%
kpkrn 0% 1% 2% 1% 2% 10% 53% 0% 0% 1% 0% 0% 1% 70%
kkrpp − − − − − 0% 67% − − 0% − 0% 3% 70%
krkrr − 0% 0% 0% 1% 26% 40% 0% 0% 1% 0% 1% 1% 70%
krkqq − − 0% 0% − 0% 61% − 0% 0% 0% 0% 9% 70%
kqkrb 23% 18% 1% 2% 21% 1% 2% 0% 0% 0% 0% 0% 0% 71%
knkrn − 0% 0% 0% 1% 21% 48% − 0% 1% − 0% 0% 71%
kqkrn 34% 15% 1% 2% 17% 1% 1% 0% 0% 0% 0% 0% 0% 71%
krpkb 64% 3% 0% − 4% − − 0% 0% 0% 0% 0% 0% 71%
kqkbn 68% 1% 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 71%
kkbbn − − − − 0% 4% 65% − − 0% − 0% 3% 71%
knkrb − 0% 0% 0% 1% 20% 49% − − 1% − 0% 1% 71%
knkqr − − 0% 0% − 5% 59% − − 2% − 1% 4% 71%
knkrr − − 0% 0% 0% 12% 56% − − 1% − 0% 1% 71%
kbnkp 60% 3% 1% 2% 3% 1% 2% 0% 0% 0% 0% 0% 0% 72%
knpkp 46% 5% 1% 2% 10% 2% 5% 0% 0% 0% 0% 0% 0% 72%
kqknn 62% 4% 0% 0% 6% − − 0% 0% 0% 0% 0% − 72%
kqkbb 66% 2% 0% 1% 2% 0% 0% 0% 0% 0% 0% 0% 0% 72%
krpkn 67% 2% 0% 0% 2% 0% − 0% 0% 0% 0% 0% 0% 72%
knnkq − 0% 0% 0% 9% 22% 37% 0% − 3% − 1% 0% 72%
kppkr 6% 10% 2% 7% 12% 5% 30% 0% 0% 0% 0% 0% 0% 72%
kqkqr 0% 2% 4% 13% 3% 13% 29% 0% 2% 1% 1% 0% 3% 72%
kbkrr − − − − 0% 18% 52% − − 1% − 0% 1% 73%
krpkq 1% 5% 2% 20% 5% 4% 31% 0% 3% 0% 1% 0% 1% 73%
kqrkr 71% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 73%
krnkb 69% 2% 0% − 2% − − 0% 0% 0% 0% 0% − 73%
kpkbn 2% 7% 1% 2% 3% 16% 41% 0% 0% 0% 0% 0% 0% 73%
kqpkr 71% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 73%
knkqb − − 0% 0% 0% 11% 55% 0% − 3% − 1% 2% 73%
krnkn 72% 1% − − 1% − − 0% − − 0% 0% − 73%
krbkb 70% 2% − − 2% − − 0% 0% 0% 0% 0% 0% 73%
knpkq 0% 1% 1% 12% 2% 7% 47% 0% 2% 1% 1% 0% 1% 73%
kbnkq 0% 1% 2% 16% 0% 5% 45% 0% 2% 0% 1% 0% 0% 73%
krpkp 72% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 73%
knppk 73% 0% − − 0% − − 0% − − − − − 74%
krrkp 74% 0% 0% 0% 0% 0% − 0% 0% 0% 0% 0% 0% 74%
kknnn − − − − 1% 20% 50% − − 1% − 0% 2% 74%
kbpkp 53% 5% 1% 3% 7% 1% 3% 0% 0% 0% 0% 0% 0% 74%
knkqn − − 0% 0% − 13% 55% 0% − 3% − 1% 1% 74%
kkbnn − − − − 0% 8% 63% − − 1% − 0% 2% 74%

continued on next page
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D. Detailed Results for Chess – Best Moves Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knkrp − 0% 0% 0% 4% 17% 53% − 0% 0% − 0% 0% 74%
krrkn 73% 0% − − 0% − − 0% − − 0% 0% − 74%
kbkrn − 0% 0% 0% 2% 24% 46% − − 1% − 0% 0% 74%
kpkqp 0% 0% 0% 2% 0% 6% 62% 0% 1% 1% 0% 0% 2% 74%
kbkqr − − − − 0% 8% 59% − − 2% − 1% 4% 74%
krbkn 72% 0% − − 1% − − 0% − − 0% 0% − 74%
krkpp 46% 5% 1% 2% 13% 3% 5% 0% 0% 0% 0% 0% 0% 74%
kqkrr 10% 18% 1% 5% 29% 2% 5% 1% 0% 0% 0% 0% 1% 74%
kqqkr 74% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 74%
kqnkr 71% 2% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 74%
kbbkq 0% 0% 1% 9% 2% 13% 45% 0% 1% 1% 0% 1% 0% 74%
kbkrb − 0% 0% 0% 1% 24% 47% − 0% 1% − 0% 1% 74%
kkbbp − − − − 1% 4% 67% − − 0% − 0% 2% 75%
krrkb 73% 1% − − 1% − − 0% − − 0% 0% − 75%
kqbkr 72% 2% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 75%
kqknp 71% 1% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 75%
kkbbb − − − − 21% 7% 43% − − 1% − 1% 3% 75%
krkqr − 0% 0% 0% 0% 13% 54% 0% 0% 2% 0% 1% 4% 75%
kppkn 28% 12% 0% 0% 35% 0% 0% 0% 0% 0% 0% 0% 0% 75%
krkqb − 0% 0% 1% 0% 21% 47% 0% 0% 3% 0% 1% 2% 75%
krrrk 75% 0% − − − − − − − − − − − 75%
kqkbp 70% 1% 0% 1% 2% 0% 0% 0% 0% 0% 0% 0% 0% 75%
krrpk 75% 0% − − 0% − − − − − − − − 75%
kkbnp − − − − 0% 1% 73% − − 0% − 0% 1% 76%
knkqp − 0% 0% 0% − 9% 63% 0% 0% 2% 0% 1% 1% 76%
kppkq 0% 1% 1% 9% 1% 10% 49% 0% 3% 0% 1% 0% 1% 76%
kbkrp − 0% 0% 0% 5% 21% 49% − 0% 0% − 0% 0% 76%
kpkrp 0% 1% 3% 5% 0% 6% 60% 0% 0% 0% 0% 0% 0% 76%
kpkpp 9% 5% 1% 3% 7% 8% 42% 0% 0% 0% 0% 0% 0% 76%
kbkqb − − 0% 0% 0% 14% 55% − 0% 3% − 1% 2% 76%
kbpkq 0% 1% 1% 14% 3% 6% 47% 0% 2% 0% 1% 0% 1% 76%
krrnk 76% 0% − − − − − − − − − − − 76%
kpknp 6% 6% 1% 2% 12% 11% 38% 0% 0% 0% 0% 0% 0% 76%
kbppk 76% 0% − − 0% − − 0% − − 0% − − 76%
krkqp 0% 0% 0% 16% 0% 5% 51% 0% 2% 0% 1% 0% 1% 76%
kbkqn − − 0% 0% 0% 15% 55% − − 3% − 1% 1% 76%
kknnp − − − − 1% 8% 66% − − 0% − 0% 1% 77%
krnkq 1% 8% 4% 12% 24% 10% 14% 0% 2% 0% 1% 0% 0% 77%
kkbpp − − − − 0% 1% 75% − − 0% − 0% 1% 77%
krkqn − 0% 0% 2% 0% 21% 47% 0% 0% 3% 0% 1% 1% 77%
krbkq 2% 10% 4% 9% 32% 8% 7% 1% 2% 0% 1% 0% 0% 77%
kqpkb 76% 1% − 0% 0% − 0% 0% 0% 0% 0% 0% 0% 77%
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D.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqpkn 77% 0% − − 0% − − 0% − − 0% 0% 0% 77%
kqkpp 75% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 77%
krnkp 74% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 77%
krrbk 77% 0% − − 0% − − − − − − − − 77%
knnnk 75% 1% − − 1% − − − − − − − − 77%
kqrkb 77% 0% − − 0% − − 0% − − 0% 0% − 77%
kbkqp − − 0% 0% 0% 13% 61% − 0% 2% − 1% 1% 78%
kqrkn 78% 0% − − 0% − − 0% − − 0% 0% − 78%
kqpkp 78% 0% 0% 0% 0% − − 0% 0% 0% 0% 0% 0% 78%
kpkbp 3% 6% 2% 3% 8% 11% 45% 0% 0% 0% 0% 0% 0% 78%
kqbkb 77% 1% − 0% 0% − 0% 0% 0% 0% 0% 0% 0% 78%
kqnkp 78% 0% 0% 0% 0% − − 0% 0% 0% 0% 0% 0% 78%
kqnkb 77% 1% 0% − 0% − − 0% 0% − 0% 0% − 78%
knnpk 75% 2% − − 2% − − − − − − − − 78%
krbkp 76% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 78%
kqpkq 20% 20% 1% 4% 28% 0% 0% 2% 0% 0% 1% 0% 0% 78%
kknpp − − − − 0% 1% 76% − − 0% − 0% 1% 78%
kqnkn 77% 0% − − 1% − − 0% − − 0% 0% − 78%
krpkr 28% 16% 1% 1% 32% 0% 0% 0% 0% 0% 0% 0% 0% 78%
kbnpk 78% 0% − − 0% − − − − − − − − 78%
kqrkp 78% 0% 0% − 0% − − 0% 0% 0% 0% 0% 0% 78%
krppk 78% 0% − − 0% − − 0% − − 0% − − 78%
kqqkb 79% 0% − − − − − 0% − − 0% − − 79%
kqrpk 79% 0% − − 0% − − − − − − − − 79%
kqbkn 78% 0% − − 1% − − 0% − − 0% 0% − 79%
kqbkp 79% 0% 0% 0% 0% − − 0% 0% 0% 0% 0% 0% 79%
kqppk 79% 0% − − 0% − − − − − 0% − − 79%
kbnnk 79% 0% − − 0% − − − − − − − − 79%
kqrrk 80% 0% − − − − − − − − − − − 80%
kqnpk 80% 0% − − 0% − − − − − − − − 80%
kbbnk 80% 0% − − 0% − − − − − − − − 80%
kqqkn 80% 0% − − − − − 0% − − 0% 0% − 80%
krnpk 80% 0% − − 0% − − − − − − − − 80%
kqrnk 80% 0% − − − − − − − − − − − 80%
kppkb 22% 14% 0% 0% 45% 0% 0% 0% 0% 0% 0% 0% 0% 80%
kqbpk 80% 0% − − − − − − − − − − − 80%
kkppp − − − − 0% 0% 79% − − 0% − 0% 1% 81%
kqrbk 81% 0% − − − − − − − − − − − 81%
kbbpk 78% 1% − − 2% − − − − − − − − 81%
kqnnk 81% 0% − − − − − − − − − − − 81%
krbpk 81% 0% − − 0% − − − − − 0% − − 81%
krnnk 81% 0% − − 0% − − − − − − − − 81%
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D. Detailed Results for Chess – Best Moves Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqbnk 82% 0% − − 0% − − − − − − − − 82%
kqbkq 9% 23% 1% 3% 41% 0% 0% 2% 0% 0% 1% 0% 0% 82%
krbnk 82% 0% − − 0% − − − − − − − − 82%
kbpkn 25% 14% 0% 0% 43% 0% 0% 0% 0% 0% 0% 0% 0% 82%
krbbk 82% 0% − − 0% − − − − − − − − 82%
kqqkp 82% 0% 0% − 0% − − 0% 0% 0% 0% 0% 0% 83%
knkbb − 0% 0% 0% 50% 13% 20% − − 0% − 0% 0% 83%
kqbbk 83% 0% − − − − − − − − − − − 83%
kqqpk 83% − − − − − − − − − − − − 83%
kqqnk 84% − − − − − − − − − − − − 84%
kbbkn 32% 0% − − 52% − − 0% − − 0% 0% − 84%
krkrp 0% 10% 2% 5% 39% 10% 17% 0% 0% 0% 0% 0% 0% 84%
kqqbk 84% − − − − − − − − − − − − 84%
knkpp 0% 0% 0% 0% 47% 10% 28% − − 0% − 0% 0% 84%
kpkbb 1% 8% 0% 0% 42% 9% 23% 0% 0% 0% 0% 0% 0% 84%
knpkn 21% 13% 0% 0% 51% 0% 0% 0% 0% 0% 0% 0% 0% 85%
kqkqp 0% 17% 3% 9% 38% 6% 7% 1% 1% 1% 1% 0% 0% 85%
kbbkp 34% 1% 0% 1% 47% 1% 1% 0% 0% 0% 0% 0% 0% 86%
kqnkq 5% 25% 2% 4% 47% 0% 0% 2% 0% 0% 1% 0% 0% 86%
krbkr 5% 23% 0% 0% 58% 0% 0% 0% 0% 0% 0% 0% 0% 86%
kqqrk 86% − − − − − − − − − − − − 86%
kpknn 2% 8% 0% 0% 59% 9% 9% 0% 0% 0% 0% 0% 0% 86%
knnkp 13% 7% 0% 0% 63% 2% 1% 0% − 0% 0% 0% 0% 86%
knkbp 0% 0% 0% 0% 57% 10% 20% − 0% 0% − 0% 0% 86%
kbbbk 61% 0% − − 26% − − − − − − − − 87%
kbpkb 13% 15% 0% 0% 58% 0% 0% 0% 0% 0% 0% 0% 0% 87%
krknp 4% 15% 0% 0% 63% 2% 1% 0% 0% 0% 0% 0% 0% 87%
knpkr 2% 17% 1% 1% 61% 3% 2% 0% 0% 0% 0% 0% 0% 88%
knpkb 12% 16% 0% 0% 61% 0% 0% 0% 0% 0% 0% 0% 0% 88%
knknp 0% 0% 0% 0% 64% 8% 17% − − 0% − 0% 0% 88%
kqqqk 89% − − − − − − − − − − − − 89%
krnkr 3% 23% 0% 0% 62% 0% 0% 0% 0% 0% 0% 0% 0% 89%
kqkqb 0% 18% 2% 4% 50% 5% 3% 1% 1% 1% 1% 1% 1% 89%
kbkpp 0% 0% 0% 0% 59% 11% 19% − − 0% − 0% 0% 89%
kbpkr 3% 19% 0% 0% 64% 1% 1% 0% 0% 0% 0% 0% 0% 89%
krkbp 1% 16% 0% 0% 67% 3% 2% 0% 0% 0% 0% 0% 0% 90%
kbnkn 4% 18% − − 68% − − 0% − − 0% 0% − 90%
kqkqn 0% 21% 2% 4% 53% 3% 2% 2% 1% 1% 1% 1% 0% 91%
kbkbp 0% 0% 0% 0% 72% 9% 10% − − 0% − 0% 0% 92%
knkbn − 0% 0% − 85% 5% 3% − − 0% − 0% 0% 92%
krkrb 0% 1% 0% 0% 84% 4% 3% 0% 0% 1% 0% 0% 0% 93%
kbknp 0% 0% 0% 0% 77% 7% 9% − 0% 0% − 0% 0% 93%
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D.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kbnkr 1% 20% 0% 0% 72% 0% 0% 0% 0% 0% 0% 0% 0% 94%
krkrn 0% 3% 0% 0% 85% 3% 2% 0% 0% 0% 0% 0% 0% 94%
kbbkr 1% 11% 0% 0% 82% 0% 0% 0% 0% 0% 0% 0% 0% 95%
kbnkb 1% 20% 0% − 74% 0% − 0% 0% 0% 0% 0% 0% 95%
kbbkb 1% 10% − − 84% 0% − 0% − − 0% 0% 0% 95%
kbkbb − 0% 0% 0% 93% 2% 1% 0% − 0% − 0% 0% 96%
kbkbn − 0% − 0% 93% 2% 1% − − 0% − 0% 0% 96%
krkbn 0% 3% 0% 0% 92% 1% 1% 0% 0% 0% 0% 0% 0% 97%
krkbb 0% 1% 0% 0% 94% 1% 1% 0% 0% 0% 0% 0% 0% 97%
knnkr − 0% − 0% 97% 0% 0% − − 0% − 0% 0% 98%
krknn 0% 5% 0% 0% 93% 0% 0% 0% − 0% 0% 0% 0% 98%
knknn − 0% − − 100% 0% 0% − − 0% − 0% 0% 100%
knnkb 0% 0% − − 100% − − 0% − 0% − 0% − 100%
kbknn − 0% − − 100% 0% 0% − − 0% − 0% 0% 100%
knnkn 0% 0% − − 100% − − 0% − − − 0% − 100%

Mean 29% 3% 0% 1% 17% 4% 20% 0% 0% 0% 0% 0% 2% 77%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkrrb − − − − 22% − − 20% 42%
kkqbn − − − − 20% − − 22% 42%
kkqrn − − − − 17% − − 25% 42%
kkrrn − − − − 23% − − 19% 42%
kkqrb − − − − 15% − − 27% 42%
kkqqb − − − − 10% − − 32% 42%
kkqqn − − − − 11% − − 31% 41%
kkqbb − − − − 18% − − 23% 41%
kkqrp − − − − 18% − − 23% 41%
kkqqp − − − − 12% − − 29% 41%
kkqbp − − − − 21% − − 20% 41%
kkrrr − − − − 15% − − 25% 40%
kkrrp − − − − 23% − − 17% 40%
kkqqr − − − − 7% − − 32% 40%
kkqrr − − − − 10% − − 29% 39%
kkqqq − − − − 6% − − 33% 39%
kkqnp − − − − 21% − − 17% 39%
kkqnn − − − − 22% − − 17% 38%
kkrbn − − − − 23% − − 14% 37%
kpppk 37% 0% − − − 0% 0% − 37%
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D. Detailed Results for Chess – Best Moves Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kpkqq − 0% 0% 0% 13% − 0% 24% 37%
kkrbb − − − − 21% − 0% 16% 37%
kpkqr − 0% 0% 0% 18% − 0% 19% 37%
krrkr 33% 2% 0% 0% − 1% 0% 0% 36%
kqrkq 26% 3% 3% 0% 0% 2% 0% 0% 35%
kkrnn − − − − 23% − 0% 11% 34%
kppkp 24% 5% 1% 1% 3% 0% 0% 0% 34%
kpkrr 0% 0% 0% 0% 22% 0% 0% 12% 33%
kkqpp − − − 0% 19% − − 15% 33%
kkrbp − − − − 21% − 0% 12% 33%
kpkqb 0% 0% 0% 0% 21% 0% 0% 10% 32%
kqqkq 24% 5% 0% 0% 0% 2% 0% 0% 32%
kkrnp − − − − 22% − − 10% 32%
knkqq − − − − 13% − − 18% 32%
kbkqq − − − 0% 14% − 0% 17% 31%
kqkqq 0% 0% 0% 5% 15% 0% 1% 9% 31%
krrkq 9% 13% 2% 2% 2% 0% 1% 1% 30%
kpkqn 0% 0% 0% 0% 22% 0% 0% 8% 30%
kpkrb 0% 0% 0% 5% 20% 0% 0% 6% 30%
kqkrp 24% 3% 1% 1% 1% 1% 0% 0% 30%
kpkrn 0% 0% 0% 5% 21% 0% 0% 4% 30%
kkrpp − − − 0% 21% − − 9% 30%
krkrr − 0% 0% 5% 20% − 0% 4% 30%
krkqq − − − 0% 13% − 0% 16% 30%
kqkrb 12% 13% 1% 2% 1% 0% 1% 0% 29%
knkrn − − 0% 3% 25% − 0% 2% 29%
kqkrn 16% 10% 1% 1% 1% 0% 0% 0% 29%
krpkb 26% 3% 0% 0% − 0% 0% 0% 29%
kqkbn 27% 1% 0% 1% 0% 0% 0% 0% 29%
kkbbn − − − 0% 18% − 0% 10% 29%
knkrb − − 0% 2% 23% − 0% 3% 29%
knkqr − − − 0% 17% − 0% 11% 29%
knkrr − − − 1% 21% − 0% 6% 29%
kbnkp 22% 3% 1% 1% 1% 0% 0% 0% 28%
knpkp 18% 5% 1% 1% 3% 0% 0% 0% 28%
kqknn 25% 3% 0% 0% − 0% 0% − 28%
kqkbb 25% 1% 1% 0% 0% 1% 0% 0% 28%
krpkn 26% 2% 0% − − 0% 0% − 28%
knnkq − 0% 0% 8% 17% − 0% 2% 28%
kppkr 4% 5% 1% 3% 12% 0% 0% 1% 28%
kqkqr 0% 0% 1% 4% 16% 0% 0% 6% 28%
kbkrr − − − 3% 19% − 0% 5% 27%
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D.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

krpkq 1% 2% 3% 2% 16% 0% 0% 2% 27%
kqrkr 25% 1% 0% 0% 0% 1% 0% 0% 27%
krnkb 26% 1% − 0% − 0% 0% − 27%
kpkbn 1% 1% 0% 4% 19% 0% 0% 2% 27%
kqpkr 24% 1% 1% 0% 0% 1% 0% 0% 27%
knkqb − − − 1% 20% − 0% 6% 27%
krnkn 26% 1% − − − 0% 0% − 27%
krbkb 25% 1% − − − 0% 0% 0% 27%
knpkq 0% 0% 1% 2% 20% 0% 0% 3% 27%
kbnkq 0% 1% 3% 1% 20% 0% 0% 2% 27%
krpkp 24% 1% 2% 0% 0% 0% 0% 0% 27%
knppk 26% 0% − − − 0% 0% − 26%
krrkp 26% 0% 0% 0% − 0% 0% − 26%
kknnn − − − 3% 18% − 0% 6% 26%
kbpkp 19% 4% 1% 1% 1% 0% 0% 0% 26%
knkqn − − − 1% 21% − 0% 5% 26%
kkbnn − − − 0% 19% − 0% 8% 26%
knkrp − 0% 0% 4% 21% − 0% 1% 26%
krrkn 26% 0% − − − 0% 0% − 26%
kbkrn − − − 5% 19% − 0% 2% 26%
kpkqp 0% 0% 0% 0% 17% 0% 0% 8% 26%
kbkqr − − − 1% 16% − 0% 9% 26%
krbkn 26% 1% − − − 0% 0% − 26%
krkpp 16% 3% 2% 2% 2% 0% 0% 0% 26%
kqkrr 4% 11% 1% 4% 3% 0% 1% 1% 26%
kqqkr 25% 0% 0% 0% 0% 0% 0% 0% 26%
kqnkr 23% 2% 0% 0% 0% 1% 0% 0% 26%
kbbkq 0% 1% 2% 4% 17% 0% 0% 2% 26%
kbkrb − − − 4% 19% − 0% 3% 26%
kkbbp − − − 1% 16% − 0% 8% 25%
krrkb 25% 1% − − − 0% 0% − 25%
kqbkr 23% 2% 0% 0% 0% 1% 0% 0% 25%
kqknp 24% 1% 0% 0% 0% 0% 0% 0% 25%
kkbbb − − − 0% 12% − 2% 10% 25%
krkqr − − 0% 1% 15% − 0% 9% 25%
kppkn 17% 8% 0% 0% 0% 0% 0% 0% 25%
krkqb − 0% 0% 2% 18% 0% 0% 5% 25%
krrrk 25% 0% − − − − − − 25%
kqkbp 23% 1% 0% 0% 0% 0% 0% 0% 25%
krrpk 24% 0% − − − − − − 25%
kkbnp − − − 0% 18% − 0% 6% 24%
knkqp − − 0% 0% 19% 0% 0% 5% 24%
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D. Detailed Results for Chess – Best Moves Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kppkq 1% 0% 1% 1% 17% 0% 0% 4% 24%
kbkrp − − − 6% 17% − 0% 1% 24%
kpkrp 0% 1% 0% 1% 19% 0% 0% 4% 24%
kpkpp 5% 2% 2% 3% 11% 0% 0% 0% 24%
kbkqb − − − 1% 18% − 0% 5% 24%
kbpkq 0% 0% 2% 2% 17% 0% 0% 3% 24%
krrnk 24% 0% − − − − − − 24%
kpknp 3% 2% 0% 5% 12% 0% 0% 1% 24%
kbppk 24% 0% − − − 0% 0% − 24%
krkqp 0% 0% 1% 0% 19% 0% 0% 3% 24%
kbkqn − − − 1% 18% − 0% 4% 24%
kknnp − − − 2% 17% − 0% 4% 23%
krnkq 1% 3% 3% 6% 7% 0% 0% 2% 23%
kkbpp − − − 0% 18% − 0% 5% 23%
krkqn − 0% 0% 2% 18% 0% 0% 4% 23%
krbkq 1% 6% 3% 7% 4% 0% 0% 1% 23%
kqpkb 22% 1% − − − 0% 0% 0% 23%
kqpkn 23% 0% 0% − − 0% 0% − 23%
kqkpp 22% 1% 0% 0% 0% 0% 0% 0% 23%
krnkp 21% 2% 0% 0% 0% 0% 0% 0% 23%
krrbk 23% 0% − − − − − − 23%
knnnk 19% 3% − − − − − − 23%
kqrkb 22% 0% − − − 0% 0% − 23%
kbkqp − − − 1% 18% − 0% 4% 22%
kqrkn 22% 0% − − − 0% 0% − 22%
kqpkp 22% 0% 0% 0% − 0% 0% − 22%
kpkbp 2% 1% 0% 4% 13% 0% 0% 1% 22%
kqbkb 21% 1% − − − 0% 0% 0% 22%
kqnkp 22% 0% 0% 0% − 0% 0% − 22%
kqnkb 21% 1% 0% − − 0% 0% − 22%
knnpk 20% 2% − − − − − − 22%
krbkp 20% 2% 0% 0% 0% 0% 0% 0% 22%
kqpkq 9% 7% 2% 1% 0% 1% 1% 0% 22%
kknpp − − − 0% 18% − 0% 3% 22%
kqnkn 22% 0% − − − 0% 0% − 22%
krpkr 13% 7% 1% 0% 0% 0% 1% 0% 22%
kbnpk 22% 0% − − − 0% − − 22%
kqrkp 22% 0% 0% 0% − 0% 0% − 22%
krppk 22% 0% − − − 0% − − 22%
kqqkb 21% 0% − − − 0% − − 21%
kqrpk 21% 0% − − − − − − 21%
kqbkn 21% 0% − − − 0% 0% − 21%
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D.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kqbkp 21% 0% 0% 0% − 0% 0% − 21%
kqppk 21% 0% − − − 0% − − 21%
kbnnk 21% 0% − − − − − − 21%
kqrrk 20% 0% − − − − − − 20%
kqnpk 20% 0% − − − − − − 20%
kbbnk 20% 0% − − − − − − 20%
kqqkn 20% 0% − − − 0% 0% − 20%
krnpk 20% 0% − − − 0% − − 20%
kqrnk 20% 0% − − − − − − 20%
kppkb 11% 8% 0% 0% 0% 0% 1% 0% 20%
kqbpk 20% 0% − − − − − − 20%
kkppp − − − 0% 17% − 0% 2% 19%
kqrbk 19% 0% − − − − − − 19%
kbbpk 19% 1% − − − − − − 19%
kqnnk 19% 0% − − − − − − 19%
krbpk 19% 0% − − − 0% − − 19%
krnnk 19% 0% − − − − − − 19%
kqbnk 18% 0% − − − − − − 18%
kqbkq 4% 10% 2% 1% 0% 0% 1% 0% 18%
krbnk 18% 0% − − − − − − 18%
kbpkn 12% 6% 0% 0% 0% 0% 0% − 18%
krbbk 18% 0% − − − − − − 18%
kqqkp 17% 0% 0% 0% − 0% 0% − 17%
knkbb − − − 3% 13% − 1% 1% 17%
kqbbk 17% 0% − − − − − − 17%
kqqpk 17% 0% − − − − − − 17%
kqqnk 16% 0% − − − − − − 16%
kbbkn 16% 0% − − − 0% 0% − 16%
krkrp 0% 1% 1% 5% 8% 0% 0% 1% 16%
kqqbk 16% − − − − − − − 16%
knkpp 0% 0% 0% 6% 10% − 0% 0% 16%
kpkbb 1% 1% 0% 1% 9% 0% 1% 2% 16%
knpkn 9% 6% 0% 0% 0% 0% 0% 0% 15%
kqkqp 0% 1% 2% 5% 5% 0% 1% 1% 15%
kbbkp 10% 1% 1% 2% 0% 0% 0% 0% 14%
kqnkq 2% 7% 2% 1% 0% 0% 1% 0% 14%
krbkr 3% 11% 0% 0% 0% 0% 1% 0% 14%
kqqrk 14% − − − − − − − 14%
kpknn 1% 2% 0% 5% 5% 0% 1% 0% 14%
knnkp 7% 4% 0% 2% 1% 0% 0% 0% 14%
knkbp 0% 0% 0% 7% 7% − 0% 0% 14%
kbbbk 13% 0% − − − − − − 13%
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D. Detailed Results for Chess – Best Moves Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kbpkb 6% 6% 0% 0% 0% 0% 0% − 13%
krknp 3% 7% 0% 3% 1% 0% 0% 0% 13%
knpkr 2% 4% 0% 4% 1% 0% 1% 0% 12%
knpkb 6% 6% 0% 0% 0% 0% 0% 0% 12%
knknp 0% 0% 0% 5% 6% − 0% 0% 12%
kqqqk 11% − − − − − − − 11%
krnkr 2% 8% 0% 0% 0% 0% 1% 0% 11%
kqkqb 0% 1% 1% 4% 2% 0% 1% 1% 11%
kbkpp 0% 0% 0% 5% 5% − 0% 0% 11%
kbpkr 2% 5% 0% 1% 1% 0% 1% 0% 11%
krkbp 0% 5% 0% 4% 1% 0% 0% 0% 10%
kbnkn 3% 7% − 0% − 0% 0% − 10%
kqkqn 0% 1% 1% 3% 1% 0% 1% 1% 9%
kbkbp − 0% 0% 5% 3% − 0% 0% 8%
knkbn − − − 6% 1% − 1% 0% 8%
krkrb 0% 0% 0% 4% 1% 0% 2% 1% 7%
kbknp 0% 0% 0% 4% 3% − 0% 0% 7%
kbnkr 0% 5% 0% 0% 0% 0% 1% 0% 6%
krkrn 0% 0% 0% 3% 1% 0% 2% 0% 6%
kbbkr 0% 4% 0% 0% 0% 0% 1% 0% 5%
kbnkb 0% 5% − 0% − 0% 0% 0% 5%
kbbkb 0% 4% − 0% − 0% 0% − 5%
kbkbb − 0% − 2% 0% − 1% 0% 4%
kbkbn − − − 3% 0% − 1% 0% 4%
krkbn 0% 0% 0% 1% 0% 0% 0% 0% 3%
krkbb 0% 0% 0% 1% 0% 0% 1% 0% 3%
knnkr − 0% − 1% 0% − 1% 0% 2%
krknn 0% 1% 0% 0% − 0% 0% 0% 2%
knknn − − − 0% 0% − 0% 0% 0%
knnkb 0% 0% − 0% − − 0% − 0%
kbknn − − − 0% 0% − 0% 0% 0%
knnkn 0% 0% − 0% − − 0% − 0%

Mean 9% 1% 0% 1% 7% 0% 0% 4% 23%
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D.4. Figures
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(b) Endgames with 4 pieces (including kings)
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(c) Endgames with 5 pieces (including kings)

Figure D.4.1: Cordel Frequencies for different piece configurations
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D. Detailed Results for Chess – Best Moves Rule

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.20

0.01 0.00 0.00

0.44

0.02

0.15

0.06
0.01 0.00 0.01

0.06

WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(a) Endgames with 3 pieces (including kings)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.26

0.03
0.00 0.01

0.26

0.03

0.19

0.08

0.01 0.00 0.01
0.07

WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(b) Endgames with 4 pieces (including kings)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.29

0.03
0.00 0.01

0.17

0.04

0.20

0.09

0.01 0.00 0.01
0.07

WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(c) Endgames with 5 pieces (including kings)

Figure D.4.2: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with at least three feasible moves.
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D.4. Figures
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Figure D.4.3: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with only two (left) or one (right) feasible
moves.
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D. Detailed Results for Chess – Best Moves Rule

D.5 Monte Carlo Samples for Endgames with 6

Pieces
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Figure D.5.1: Cordel Frequencies for the 515 different piece configurations.
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Figure D.5.2: Relative frequencies of different types of chess positions in endgames with 6
pieces (including kings) with only two (left) or one (right) feasible moves.

158



Appendix E

Detailed Results for Chess –
Best Move Per Piece Rule

Refers to page 16.

Overview of the results presented in this chapter:

Endgames with 3 pieces
(Section E.1)

Cordel Instances page 160

Non-Cordel Instances page 160

Endgames with 4 pieces
(Section E.2)

Cordel Instances page 161

Non-Cordel Instances page 162

Endgames with 5 pieces
(Section E.3)

Cordel Instances page 164

Non-Cordel Instances page 169

Figures of the results for endgames with 3, 4, or 5 pieces page 175

(Section E.4)

Monte-Carlo results for endgames with 6 pieces page 178

(Section E.5)
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E. Detailed Results for Chess – Best Move Per Piece Rule

E.1 Endgames with 3 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knk − − − − − − − − − − − 0% − 0%
kbk − − − − − − − − − − − 0% − 0%
kqk − − − − − − − 0% − − 0% − − 0%
krk − − − − − − − 5% − − 0% − − 5%
kpk − − − − − − − 15% − − 2% 2% − 18%
kkb − − − − − − − − − − − 100% − 100%
kkn − − − − − − − − − − − 100% − 100%
kkp − − − − − − − − − − − 42% 58% 100%
kkq − − − − − − − − − − − 10% 90% 100%
kkr − − − − − − − − − − − 10% 90% 100%

Mean − − − − − − − 2% − − 0% 26% 24% 52%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knk − − − − − − 100% − 100%
kbk − − − − − − 100% − 100%
kqk − − − − − 100% − − 100%
krk − − − − − 95% − − 95%
kpk − − − − − 60% 22% − 82%
kkb − − − − − − − − −
kkn − − − − − − − − −
kkp − − − − − − − − −
kkq − − − − − − − − −
kkr − − − − − − − − −

Mean − − − − − 25% 22% − 48%
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E.2. Endgames with 4 Pieces

E.2 Endgames with 4 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kbkn − − − − − − − 0% − − − 7% − 7%
knkn − − − − − − − 0% − − − 8% − 8%
kbkb − − − − − − − 0% − − − 11% − 11%
knkb − − − − − − − 0% − − − 11% − 11%
kqkn − − − − − − − 7% − − 4% 1% − 12%
kqkp − − − − − − − 9% 1% 0% 2% 0% 0% 12%
kbkp − − − − − − − 0% − 13% − 3% 0% 16%
knkp − − − − − − − 0% 0% 15% 0% 3% 0% 17%
kqkb − − − − − − − 16% − − 6% 0% − 22%
krkp − − − − − − − 8% 9% 2% 2% 0% 0% 22%
kpkn − − − − − − − 14% 0% 0% 2% 10% 0% 27%
kpkb − − − − − − − 13% − 0% 4% 13% − 30%
kpkp − − − − − − − 11% 3% 9% 3% 3% 2% 32%
kbkr − − − − − − − − − 19% − 11% 2% 33%
krkn − − − − − − − 26% − − 2% 5% − 33%
krkb − − − − − − − 26% − − 3% 4% − 33%
kqkr − − − − − − − 9% 19% 0% 7% 0% 0% 36%
kbkq − − − − − − − − − 13% − 9% 15% 37%
knkq − − − − − − − − − 10% − 9% 19% 37%
knkr − − − − − − − 0% 0% 22% − 13% 4% 39%
krkr − − − − − − − 7% 14% 7% 4% 8% 0% 41%
kpkr − − − − − − − 4% 8% 7% 3% 5% 16% 44%
krkq − − − − − − − 0% 19% 5% 7% 1% 13% 45%
kpkq − − − − − − − 0% 2% 7% 6% 4% 27% 46%
kppk 42% 2% − − 1% − − 1% − − 0% 0% − 46%
kqqk 47% − − − − − − − − − − − − 47%
kqkq − − − − − − − 9% 23% 8% 7% 7% 0% 54%
krrk 55% 0% − − − − − − − − − − − 55%
kqrk 57% 0% − − − − − − − − − − − 57%
kqpk 58% 0% − − − − − 0% − − 0% − − 59%
knpk 49% 7% − − 3% − − 1% − − 0% 0% − 59%
kbpk 52% 5% − − 3% − − 1% − − 0% 0% − 60%
kbnk 52% 9% − − 0% − − 0% − − − − − 62%
krpk 61% 0% − − − − − 0% − − 0% − − 62%
krnk 63% 3% − − − − − − − − − − − 66%
krbk 64% 3% − − − − − 0% − − − − − 67%
kqnk 72% 0% − − − − − − − − − − − 73%

continued on next page
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqbk 74% 0% − − − − − 0% − − − − − 75%
kbbk 29% 5% − − 50% − − 0% − − − − − 84%
knnk − 0% − − 100% − − − − − − − − 100%
kkbb − − − − − − − − − − − 59% 41% 100%
kkbn − − − − − − − − − − − 18% 82% 100%
kkbp − − − − − − − − − − − 17% 83% 100%
kknn − − − − − − − − − − − 100% − 100%
kknp − − − − − − − − − − − 18% 82% 100%
kkpp − − − − − − − − − − − 8% 92% 100%
kkqb − − − − − − − − − − − 9% 91% 100%
kkqn − − − − − − − − − − − 9% 91% 100%
kkqp − − − − − − − − − − − 2% 98% 100%
kkqq − − − − − − − − − − − − 100% 100%
kkqr − − − − − − − − − − − − 100% 100%
kkrb − − − − − − − − − − − 9% 91% 100%
kkrn − − − − − − − − − − − 9% 91% 100%
kkrp − − − − − − − − − − − 2% 98% 100%
kkrr − − − − − − − − − − − − 100% 100%

Mean 14% 1% − − 3% − − 3% 2% 3% 1% 7% 24% 58%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kbkn − − − − − − 93% − 93%
knkn − − − − − − 92% − 92%
kbkb − − − − − − 89% − 89%
knkb − − − − − − 89% − 89%
kqkn − − − − − 88% 0% − 88%
kqkp − − − − − 87% 1% − 88%
kbkp − − − − − − 79% 5% 84%
knkp − − − − − 0% 70% 13% 83%
kqkb − − − − − 78% 0% − 78%
krkp − − − − − 72% 6% 0% 78%
kpkn − − − − − 16% 57% 0% 73%
kpkb − − − − − 7% 63% − 70%
kpkp − − − − − 26% 21% 22% 68%
kbkr − − − − − − 66% 1% 67%
krkn − − − − − 20% 47% − 67%
krkb − − − − − 6% 61% − 67%
kqkr − − − − − 64% 0% − 64%

continued on next page
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E.2. Endgames with 4 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kbkq − − − − − − 1% 61% 63%
knkq − − − − − − 1% 62% 63%
knkr − − − − − − 54% 7% 61%
krkr − − − − − 4% 55% 0% 59%
kpkr − − − − − 1% 5% 50% 56%
krkq − − − − − 2% 0% 53% 55%
kpkq − − − − − 0% 1% 53% 54%
kppk 41% 4% − − − 8% 1% − 54%
kqqk 50% 4% − − − 0% − − 53%
kqkq − − − − − 3% 43% 0% 46%
krrk 45% 0% − − − 0% − − 45%
kqrk 42% 1% − − − 0% − − 43%
kqpk 36% 0% − − − 5% − − 41%
knpk 28% 10% − − − 3% 1% − 41%
kbpk 28% 8% − − − 4% 1% − 40%
kbnk 32% 6% − − − 0% 0% − 38%
krpk 32% 1% − − − 5% − − 38%
krnk 31% 2% − − − 0% − − 34%
krbk 30% 2% − − − 0% − − 33%
kqnk 27% 1% − − − 0% − − 27%
kqbk 24% 1% − − − 0% − − 25%
kbbk 14% 1% − − − 0% 0% − 16%
knnk − − − − − − 0% − 0%
kkbb − − − − − − − − −
kkbn − − − − − − − − −
kkbp − − − − − − − − −
kknn − − − − − − − − −
kknp − − − − − − − − −
kkpp − − − − − − − − −
kkqb − − − − − − − − −
kkqn − − − − − − − − −
kkqp − − − − − − − − −
kkqq − − − − − − − − −
kkqr − − − − − − − − −
kkrb − − − − − − − − −
kkrn − − − − − − − − −
kkrp − − − − − − − − −
kkrr − − − − − − − − −

Mean 8% 1% − − − 9% 18% 6% 42%

163



E. Detailed Results for Chess – Best Move Per Piece Rule

E.3 Endgames with 5 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kbknn − − − − − − − 0% − 0% − 14% 0% 14%
knknn − − − − − − − 0% − 0% − 15% 0% 15%
krknn − − − − − − − 5% 0% 0% 0% 12% 0% 18%
kqqkq 8% 3% 0% 0% 0% 0% 0% 4% 0% 0% 7% 0% 0% 22%
kqkpp − − − − − − − 15% 5% 0% 3% 0% 0% 23%
kqknp − − − − − − − 10% 6% 0% 6% 1% 0% 23%
knkpp − − − − − − − 0% 0% 19% 0% 4% 1% 24%
kbkpp − − − − − − − 0% 0% 20% 0% 4% 1% 25%
krkbb − − − − − − − 1% 0% 9% 0% 14% 1% 25%
kbknp − − − − − − − 0% 0% 17% 0% 7% 2% 26%
knknp − − − − − − − 0% 0% 17% 0% 7% 3% 27%
kqrkq 10% 1% 1% 1% 0% 0% 0% 2% 4% 0% 8% 2% 0% 29%
knkbb − − − − − − − 0% 0% 9% − 14% 6% 30%
kbkbb − − − − − − − 0% 0% 9% 0% 19% 1% 30%
krkbn − − − − − − − 3% 0% 13% 0% 12% 1% 30%
kqqkr 26% 0% 0% − 0% − − 0% 0% 0% 4% 0% 0% 30%
kqknn − − − − − − − 21% − 0% 8% 2% − 31%
kbkbn − − − − − − − 0% 0% 14% 0% 16% 1% 31%
kqkbp − − − − − − − 12% 11% 1% 7% 1% 0% 32%
kqkbn − − − − − − − 9% 11% 0% 9% 1% 1% 32%
knkbp − − − − − − − 0% 0% 19% 0% 9% 4% 32%
kbkbp − − − − − − − 0% 0% 19% 0% 10% 2% 32%
krkpp − − − − − − − 7% 14% 8% 3% 0% 1% 32%
kpkpp − − − − − − − 6% 5% 10% 2% 3% 7% 33%
knkrp − − − − − − − 0% 0% 15% 0% 5% 13% 33%
knkbn − − − − − − − 0% 0% 17% − 15% 2% 35%
knkqp − − − − − − − 0% 0% 6% 0% 6% 23% 35%
kbkqp − − − − − − − 0% 0% 9% 0% 7% 19% 35%
kbkrp − − − − − − − 0% 0% 20% 0% 6% 10% 35%
kpknn − − − − − − − 8% 0% 9% 1% 15% 4% 37%
kpknp − − − − − − − 6% 5% 12% 2% 6% 9% 38%
kpkrp − − − − − − − 1% 7% 4% 1% 2% 23% 39%
knkrn − − − − − − − 0% 0% 16% 0% 5% 17% 39%
kqkbb − − − − − − − 19% 8% 0% 10% 2% 0% 39%
knkrr − − − − − − − − 0% 9% 0% 5% 26% 40%
kbkrr − − − − − − − − − 15% − 6% 20% 40%
krkqq − − − − − − − − 0% 0% 0% 0% 40% 40%

continued on next page
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E.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knkrb − − − − − − − 0% 0% 15% 0% 7% 19% 40%
kpkbp − − − − − − − 4% 6% 10% 2% 6% 12% 40%
krkqp − − − − − − − 0% 13% 5% 5% 1% 16% 41%
kqrkr 32% 0% 0% 0% 0% − − 2% 0% 0% 6% 0% 0% 41%
kbkqn − − − − − − − 0% 0% 12% 0% 8% 21% 41%
kbkrn − − − − − − − 0% 0% 22% − 5% 14% 41%
kbkqr − − − − − − − − − 6% − 5% 30% 41%
knkqn − − − − − − − 0% 0% 9% − 8% 24% 42%
kpkbb − − − − − − − 6% 3% 5% 1% 18% 9% 42%
krknp − − − − − − − 18% 2% 14% 1% 6% 1% 42%
kbkrb − − − − − − − 0% 0% 20% 0% 7% 16% 43%
knkqr − − − − − − − − 0% 3% 0% 4% 36% 44%
kpkqp − − − − − − − 0% 1% 4% 2% 3% 33% 44%
krkrn − − − − − − − 1% 2% 22% 0% 16% 3% 44%
kbkqb − − − − − − − 0% 0% 11% 0% 8% 25% 44%
knkqb − − − − − − − 0% 0% 8% − 8% 28% 44%
kqqkb 41% 0% − − − − − 0% − − 3% − − 44%
kbkqq − − − − − − − − − 0% − 0% 44% 44%
kpkrn − − − − − − − 1% 3% 10% 1% 6% 25% 44%
krrkr 29% 3% 0% 0% 0% 0% − 4% 0% 0% 8% 0% 0% 44%
krkqr − − − − − − − 0% 0% 12% 0% 5% 28% 45%
krkbp − − − − − − − 16% 2% 18% 3% 6% 2% 45%
kpkbn − − − − − − − 4% 5% 12% 1% 7% 16% 46%
kpkrb − − − − − − − 0% 2% 10% 0% 6% 28% 46%
kpkrr − − − − − − − 0% 1% 5% 0% 1% 40% 46%
krkrp − − − − − − − 3% 12% 17% 3% 7% 5% 47%
kqqkp 46% 0% − − 0% − − 0% 0% − 1% 0% 0% 47%
krkqn − − − − − − − 0% 2% 19% 1% 7% 18% 47%
krkqb − − − − − − − 0% 1% 19% 0% 7% 20% 47%
kqqkn 44% 0% − − − − − 0% − − 3% 0% − 47%
kqkrp − − − − − − − 10% 25% 3% 8% 1% 1% 47%
krkrb − − − − − − − 0% 0% 27% 0% 16% 4% 48%
knkqq − − − − − − − − − 0% − 0% 49% 49%
krkrr − − − − − − − 0% 0% 24% 0% 6% 19% 49%
kpkqn − − − − − − − 0% 1% 7% 1% 8% 33% 50%
krrkb 43% 1% − − 0% − − 1% − − 4% 0% − 50%
krrkn 45% 0% − − 0% − − 0% − − 4% 0% − 51%
kqrkb 46% 0% − − 0% − − 1% − − 4% 0% − 51%
krrkq 0% 6% 5% 2% 16% 1% 0% 1% 3% 3% 6% 4% 3% 51%
kpkqr − − − − − − − 0% 0% 1% 0% 1% 50% 51%
krrkp 49% 0% 0% 0% 0% − − 0% 0% 0% 2% 0% 0% 51%
kqqpk 52% 0% − − − − − 0% − − 0% − − 52%

continued on next page
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kpkqb − − − − − − − 0% 0% 6% 0% 8% 37% 52%
kppkp 23% 6% 2% 3% 3% 3% 6% 2% 0% 1% 3% 0% 0% 53%
krpkb 32% 9% 0% − 1% − − 3% 0% 0% 6% 1% 0% 53%
kqrkn 50% 0% − − − − − 0% − − 4% 0% − 53%
krpkn 39% 6% 0% 0% 1% 0% − 1% 0% 0% 5% 1% 0% 54%
kqqnk 54% 0% − − − − − − − − − − − 54%
kqrkp 53% 0% 0% 0% 0% − − 0% 0% − 1% 0% 0% 54%
kpppk 54% 0% − − 0% − − 0% − − 0% 0% − 55%
kqpkp 50% 2% 0% 1% 0% − − 0% 0% − 2% 0% 0% 55%
kqbkr 38% 7% 0% 0% 0% 0% − 4% 0% 0% 5% 0% 0% 55%
kqpkn 47% 3% 0% 0% − − − 0% 0% − 5% 0% 0% 55%
kqkqq − − − − − − − 0% 1% 23% 0% 8% 23% 55%
kqqbk 57% 0% − − − − − − − − − − − 57%
kqpkb 44% 5% 0% − 0% − − 3% − − 6% 0% 0% 57%
krpkp 47% 2% 1% 5% 0% 0% 0% 0% 0% 0% 2% 0% 0% 59%
krbkn 46% 7% − − 0% − − 0% − − 5% 1% − 59%
kpkqq − − − − − − − 0% 0% 0% 0% 0% 59% 59%
krnkb 40% 11% − − 0% − − 2% 0% 0% 5% 1% − 60%
kqkqn − − − − − − − 6% 19% 14% 6% 10% 3% 60%
knpkp 28% 9% 2% 4% 7% 3% 3% 1% 0% 0% 2% 0% 0% 60%
krbkb 41% 10% − − 0% − − 2% − − 5% 1% 0% 60%
kqpkr 36% 2% 1% 6% 0% 0% 0% 2% 4% 0% 8% 0% 0% 60%
krnkn 46% 8% − − 0% − − 0% 0% 0% 5% 1% − 60%
kqnkr 38% 10% 0% 0% 0% 0% − 5% 1% 0% 6% 0% 0% 60%
kqkqr − − − − − − − 1% 18% 17% 5% 3% 17% 61%
kbpkp 34% 8% 2% 5% 5% 2% 2% 1% 0% 0% 2% 0% 0% 61%
krbkp 52% 6% 0% 0% 1% 0% 0% 0% 0% 0% 2% 0% 0% 61%
krrnk 62% 0% − − − − − − − − − − − 62%
krrpk 62% 0% − − 0% − − 0% − − 0% − − 62%
kqrpk 62% 0% − − 0% − − 0% − − 0% − − 62%
kbnkp 38% 11% 2% 4% 2% 2% 1% 0% 0% 0% 2% 0% 0% 63%
krnkp 51% 7% 1% 1% 1% 0% 0% 0% 0% 0% 2% 0% 0% 63%
kqbkb 50% 5% − − 0% − − 3% − − 5% 0% 0% 63%
kqkrn − − − − − − − 28% 18% 4% 7% 5% 2% 63%
kqppk 63% 0% − − 0% − − 0% − − 0% − − 64%
krrrk 64% 0% − − − − − − − − − − − 64%
kqkqb − − − − − − − 5% 18% 19% 5% 11% 5% 64%
krrbk 64% 0% − − 0% − − − − − − − − 64%
kqnkn 55% 4% − − − − − 0% − − 4% 1% − 64%
kqkqp − − − − − − − 3% 24% 21% 6% 6% 4% 64%
kqrnk 64% 0% − − − − − − − − − − − 64%
kqrrk 64% 0% − − − − − − − − − − − 64%
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E.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knppk 65% 0% − − 0% − − 0% − − 0% 0% − 65%
kqbkn 57% 3% − − 0% − − 0% − − 4% 1% − 65%
kqrbk 65% 0% − − − − − − − − − − − 65%
kqnkb 51% 7% − − 0% − − 3% 0% − 5% 0% − 66%
kppkn 17% 12% 0% 0% 26% 0% 0% 2% 0% 0% 4% 4% 0% 66%
kqnkp 60% 4% 0% 0% 0% 0% − 0% 0% 0% 2% 0% 0% 66%
krbkq 0% 3% 6% 6% 13% 13% 3% 1% 3% 3% 7% 3% 5% 67%
kqqrk 67% 0% − − − − − − − − − − − 67%
kqbkp 63% 2% 0% 0% 0% − − 0% 0% 0% 2% 0% 0% 67%
kbppk 67% 0% − − 0% − − 0% − − 0% 0% − 67%
krpkr 10% 8% 2% 6% 21% 1% 0% 2% 2% 2% 8% 5% 0% 68%
krpkq 0% 2% 3% 13% 1% 4% 18% 1% 5% 1% 8% 1% 10% 68%
kbbkq − 0% 2% 6% 0% 9% 31% 0% 2% 2% 3% 4% 9% 68%
kbnnk 66% 3% − − 0% − − − − − − − − 68%
knnnk 56% 11% − − 1% − − − − − − − − 69%
krnkq 0% 2% 5% 9% 11% 12% 6% 1% 3% 3% 7% 2% 7% 69%
krppk 69% 0% − − 0% − − 0% − − 0% − − 69%
knnkq − 0% 0% 0% 3% 17% 25% 0% 0% 4% − 9% 12% 69%
kppkr 2% 5% 2% 8% 6% 4% 19% 1% 1% 1% 6% 4% 9% 69%
kbnpk 69% 0% − − 0% − − 0% − − 0% − − 69%
kbpkq 0% 0% 1% 7% 1% 5% 28% 0% 3% 1% 7% 2% 13% 69%
knnpk 65% 3% − − 2% − − 0% − − − − − 70%
kbbnk 67% 2% − − 0% − − − − − − − − 70%
kbnkq 0% 0% 2% 10% 0% 4% 33% 0% 3% 1% 7% 1% 11% 70%
krnpk 71% 0% − − 0% − − 0% − − 0% − − 71%
knpkq 0% 0% 1% 6% 1% 6% 30% 0% 2% 1% 7% 2% 16% 71%
kqnpk 71% 0% − − 0% − − 0% − − 0% − − 71%
kqkrb − − − − − − − 30% 19% 7% 7% 6% 2% 71%
krbpk 72% 0% − − 0% − − 0% − − 0% − − 72%
kqbkq 0% 13% 7% 4% 29% 1% 0% 2% 3% 2% 6% 5% 0% 72%
krbbk 70% 2% − − 0% − − 0% − − − − − 72%
kbbpk 69% 2% − − 2% − − 0% − − 0% − − 72%
krnnk 70% 2% − − 0% − − − − − − − − 72%
kppkb 12% 14% 0% − 33% − − 2% 0% 0% 7% 5% 0% 73%
krbnk 74% 0% − − 0% − − − − − − − − 74%
kqbpk 74% 0% − − − − − 0% − − 0% − − 74%
kqpkq 2% 13% 5% 11% 15% 1% 0% 4% 7% 3% 7% 6% 0% 74%
kbpkn 15% 15% 0% 0% 36% 0% − 2% 0% 0% 3% 4% 0% 74%
kqqqk 74% − − − − − − − − − − − − 74%
kppkq 0% 0% 1% 4% 0% 9% 28% 0% 2% 1% 9% 1% 21% 75%
kqbnk 75% 0% − − 0% − − − − − − − − 75%
kqnnk 75% 0% − − − − − − − − − − − 75%
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqbbk 75% 0% − − − − − 0% − − − − − 75%
kqkrr − − − − − − − 17% 25% 17% 5% 6% 6% 76%
knpkn 12% 14% 0% 0% 42% 0% − 1% 0% 0% 2% 5% 0% 77%
kbbbk 49% 3% − − 26% − − − − − − − − 78%
kqnkq 0% 10% 7% 6% 32% 1% 0% 2% 4% 3% 6% 5% 0% 78%
kbbkp 23% 5% 1% 1% 42% 2% 1% 0% 0% 0% 1% 1% 0% 78%
kbpkr 1% 13% 1% 0% 38% 7% 0% 3% 0% 3% 4% 7% 1% 79%
krbkr 1% 18% 0% 0% 49% 0% 0% 2% 0% 0% 4% 5% 0% 79%
kbbkn 20% 7% − − 47% − − 0% − 0% 2% 4% − 79%
knpkr 1% 12% 1% 1% 37% 8% 1% 2% 0% 2% 4% 9% 2% 80%
kbpkb 6% 15% 0% − 47% 0% − 2% 0% 0% 4% 6% 0% 80%
knpkb 6% 14% 0% − 49% − − 2% 0% 0% 4% 6% 0% 81%
knnkp 7% 12% 0% 0% 57% 3% 1% 0% − 0% 1% 2% 0% 82%
krnkr 1% 17% 0% 0% 51% 0% 0% 2% 0% 1% 4% 6% 0% 83%
kbbkr 0% 10% 0% 0% 68% 0% 0% 1% 0% 0% 2% 7% 0% 88%
kbnkr 0% 15% 0% 0% 60% 0% 0% 2% 0% 1% 4% 6% 0% 89%
kbnkn 2% 19% 0% − 62% − − 1% 0% 0% 1% 6% − 90%
knnkr − 0% 0% 0% 77% 0% 0% 0% − 1% − 12% 0% 91%
kbbkb 0% 8% 0% − 74% − − 1% − 0% 2% 7% 0% 92%
kbnkb 0% 16% 0% − 66% − − 1% − 0% 3% 5% 0% 92%
knnkb − 0% − − 87% − − 0% − 0% 0% 8% − 95%
knnkn 0% 0% − − 92% − − 0% − 0% 0% 7% − 99%
kkbbb − − − − − − − − − − − 31% 69% 100%
kkbbn − − − − − − − − − − − 4% 96% 100%
kkbbp − − − − − − − − − − − 7% 93% 100%
kkbnn − − − − − − − − − − − 8% 92% 100%
kkbnp − − − − − − − − − − − 1% 99% 100%
kkbpp − − − − − − − − − − − 1% 99% 100%
kknnn − − − − − − − − − − − 25% 75% 100%
kknnp − − − − − − − − − − − 12% 88% 100%
kknpp − − − − − − − − − − − 1% 99% 100%
kkppp − − − − − − − − − − − 1% 99% 100%
kkqbb − − − − − − − − − − − 4% 96% 100%
kkqbn − − − − − − − − − − − 0% 100% 100%
kkqbp − − − − − − − − − − − 0% 100% 100%
kkqnn − − − − − − − − − − − 8% 92% 100%
kkqnp − − − − − − − − − − − 0% 100% 100%
kkqpp − − − − − − − − − − − 0% 100% 100%
kkqqb − − − − − − − − − − − − 100% 100%
kkqqn − − − − − − − − − − − − 100% 100%
kkqqp − − − − − − − − − − − − 100% 100%
kkqqq − − − − − − − − − − − − 100% 100%
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E.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkqqr − − − − − − − − − − − − 100% 100%
kkqrb − − − − − − − − − − − − 100% 100%
kkqrn − − − − − − − − − − − − 100% 100%
kkqrp − − − − − − − − − − − 0% 100% 100%
kkqrr − − − − − − − − − − − − 100% 100%
kkrbb − − − − − − − − − − − 4% 96% 100%
kkrbn − − − − − − − − − − − 0% 100% 100%
kkrbp − − − − − − − − − − − 0% 100% 100%
kkrnn − − − − − − − − − − − 8% 92% 100%
kkrnp − − − − − − − − − − − 0% 100% 100%
kkrpp − − − − − − − − − − − 0% 100% 100%
kkrrb − − − − − − − − − − − − 100% 100%
kkrrn − − − − − − − − − − − − 100% 100%
kkrrp − − − − − − − − − − − 0% 100% 100%
kkrrr − − − − − − − − − − − − 100% 100%

Mean 18% 2% 0% 1% 6% 1% 1% 2% 2% 4% 2% 4% 21% 63%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kbknn − − − − − − 86% − 86%
knknn − − − − − − 85% 0% 85%
krknn − − − − − 1% 81% − 82%
kqqkq 41% 26% 0% 0% 0% 10% 0% 0% 78%
kqkpp − − − − − 76% 1% 0% 77%
kqknp − − − − − 75% 1% 0% 77%
knkpp − − − − − 0% 40% 36% 76%
kbkpp − − − − − 0% 51% 24% 75%
krkbb − − − − − 0% 74% 0% 75%
kbknp − − − − − 0% 64% 10% 74%
knknp − − − − − 0% 53% 20% 73%
kqrkq 29% 16% 16% 0% 0% 9% 1% 0% 71%
knkbb − − − − − − 43% 27% 70%
kbkbb − − − − − − 70% 0% 70%
krkbn − − − − − 0% 69% 0% 70%
kqqkr 62% 0% 0% − − 8% 0% 0% 70%
kqknn − − − − − 66% 4% − 69%
kbkbn − − − − − − 69% 0% 69%
kqkbp − − − − − 67% 1% 0% 68%
kqkbn − − − − − 68% 0% 0% 68%
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knkbp − − − − − 0% 46% 23% 68%
kbkbp − − − − − 0% 57% 11% 68%
krkpp − − − − − 51% 10% 6% 68%
kpkpp − − − − − 14% 6% 47% 67%
knkrp − − − − − 0% 5% 62% 67%
knkbn − − − − − − 63% 2% 65%
knkqp − − − − − 0% 1% 64% 65%
kbkqp − − − − − − 1% 64% 65%
kbkrp − − − − − − 7% 58% 65%
kpknn − − − − − 4% 49% 9% 63%
kpknp − − − − − 10% 10% 42% 62%
kpkrp − − − − − 1% 0% 60% 61%
knkrn − − − − − − 3% 58% 61%
kqkbb − − − − − 59% 1% 0% 61%
knkrr − − − − − − 1% 59% 60%
kbkrr − − − − − − 2% 58% 60%
krkqq − − − − − − 0% 60% 60%
knkrb − − − − − − 3% 57% 60%
kpkbp − − − − − 5% 7% 48% 60%
krkqp − − − − − 1% 0% 58% 59%
kqrkr 40% 12% 0% 0% − 7% 0% 0% 59%
kbkqn − − − − − − 1% 58% 59%
kbkrn − − − − − − 5% 54% 59%
kbkqr − − − − − − 1% 58% 59%
knkqn − − − − − − 1% 58% 58%
kpkbb − − − − − 2% 31% 25% 58%
krknp − − − − − 9% 48% 1% 58%
kbkrb − − − − − − 4% 53% 57%
knkqr − − − − − − 0% 56% 56%
kpkqp − − − − − 0% 0% 56% 56%
krkrn − − − − − 0% 56% 1% 56%
kbkqb − − − − − − 1% 55% 56%
knkqb − − − − − − 1% 55% 56%
kqqkb 50% 0% − − − 6% − − 56%
kbkqq − − − − − − 0% 56% 56%
kpkrn − − − − − 0% 2% 54% 56%
krrkr 28% 23% 0% 0% − 4% 0% 0% 56%
krkqr − − − − − − 1% 54% 55%
krkbp − − − − − 3% 49% 2% 55%
kpkbn − − − − − 4% 4% 47% 54%
kpkrb − − − − − 0% 1% 52% 54%
kpkrr − − − − − 0% 0% 53% 54%
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E.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

krkrp − − − − − 2% 30% 21% 53%
kqqkp 51% 1% 0% − − 1% 0% − 53%
krkqn − − − − − 0% 2% 51% 53%
krkqb − − − − − 0% 2% 51% 53%
kqqkn 49% 0% − − − 4% 0% − 53%
kqkrp − − − − − 49% 3% 1% 53%
krkrb − − − − − 0% 51% 1% 52%
knkqq − − − − − − − 51% 51%
krkrr − − − − − − 4% 47% 51%
kpkqn − − − − − 0% 0% 50% 50%
krrkb 31% 14% − − − 5% 0% − 50%
krrkn 39% 8% − − − 3% 0% − 49%
kqrkb 37% 7% − − − 6% 0% − 49%
krrkq 0% 11% 18% 11% 0% 4% 2% 2% 49%
kpkqr − − − − − 0% 0% 49% 49%
krrkp 42% 5% 1% 0% − 1% 0% − 49%
kqqpk 45% 3% − − − 0% − − 48%
kpkqb − − − − − 0% 0% 48% 48%
kppkp 23% 7% 1% 2% 5% 7% 1% 2% 47%
krpkb 21% 17% 0% 0% − 8% 1% − 47%
kqrkn 40% 2% − − − 4% 0% − 47%
krpkn 27% 12% 0% 0% − 6% 1% − 46%
kqqnk 44% 2% − − − 0% − − 46%
kqrkp 44% 0% 0% − − 1% 0% − 46%
kpppk 44% 0% − − − 1% 0% − 45%
kqpkp 35% 2% 0% 0% − 7% 0% − 45%
kqbkr 23% 16% 0% 0% − 5% 0% 0% 45%
kqpkn 33% 3% 0% − − 9% 0% − 45%
kqkqq − − − − − 0% 2% 42% 45%
kqqbk 42% 2% − − − 0% − − 43%
kqpkb 29% 3% 0% − − 10% 0% − 43%
krpkp 30% 3% 2% 0% 0% 6% 0% 0% 41%
krbkn 29% 9% − − − 2% 0% − 41%
kpkqq − − − − − − 0% 41% 41%
krnkb 23% 13% − − − 3% 1% − 40%
kqkqn − − − − − 2% 37% 1% 40%
knpkp 17% 11% 1% 2% 4% 4% 1% 0% 40%
krbkb 23% 13% − − − 3% 1% − 40%
kqpkr 23% 3% 3% 0% 0% 11% 0% 0% 40%
krnkn 28% 10% − − − 2% 0% − 40%
kqnkr 22% 12% 1% 0% − 5% 0% 0% 40%
kqkqr − − − − − 1% 2% 37% 39%
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kbpkp 19% 10% 1% 1% 2% 4% 1% 0% 39%
krbkp 28% 9% 1% 0% 0% 1% 0% 0% 39%
krrnk 38% 0% − − − 0% − − 38%
krrpk 38% 0% − − − 0% − − 38%
kqrpk 37% 1% − − − 0% − − 38%
kbnkp 24% 7% 3% 1% 2% 1% 0% 0% 37%
krnkp 28% 8% 1% 0% 0% 1% 0% 0% 37%
kqbkb 25% 8% − − − 4% 0% − 37%
kqkrn − − − − − 26% 11% 0% 37%
kqppk 36% 0% − − − 0% − − 36%
krrrk 36% 0% − − − 0% − − 36%
kqkqb − − − − − 2% 32% 2% 36%
krrbk 36% 0% − − − 0% − − 36%
kqnkn 28% 4% − − − 3% 0% − 36%
kqkqp − − − − − 2% 24% 9% 36%
kqrnk 35% 1% − − − 0% − − 36%
kqrrk 35% 0% − − − 0% − − 36%
knppk 34% 0% − − − 0% 0% − 35%
kqbkn 27% 4% − − − 3% 0% − 35%
kqrbk 34% 1% − − − 0% − − 35%
kqnkb 24% 7% − − − 4% 0% − 34%
kppkn 16% 9% 0% 0% 0% 4% 5% 0% 34%
kqnkp 27% 5% 0% 0% − 1% 0% − 34%
krbkq 0% 2% 7% 14% 2% 3% 2% 3% 33%
kqqrk 33% 0% − − − 0% − − 33%
kqbkp 26% 5% 0% − − 1% 0% − 33%
kbppk 32% 0% − − − 0% 0% − 33%
krpkr 10% 12% 2% 1% 0% 4% 3% 0% 32%
krpkq 0% 1% 3% 3% 13% 2% 1% 9% 32%
kbbkq − 0% 2% 4% 16% 1% 1% 8% 32%
kbnnk 30% 2% − − − 0% − − 32%
knnnk 21% 11% − − − − − − 31%
krnkq 0% 1% 5% 12% 6% 2% 1% 4% 31%
krppk 30% 0% − − − 0% 0% − 31%
knnkq − − − 8% 14% − 2% 7% 31%
kppkr 3% 3% 2% 3% 11% 1% 1% 6% 31%
kbnpk 31% 0% − − − 0% 0% − 31%
kbpkq 0% 0% 1% 2% 15% 1% 0% 11% 31%
knnpk 26% 4% − − − 0% 0% − 30%
kbbnk 30% 1% − − − 0% − − 30%
kbnkq 0% 0% 2% 1% 17% 2% 0% 8% 30%
krnpk 29% 0% − − − 0% 0% − 29%
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E.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knpkq 0% 0% 1% 2% 15% 1% 0% 10% 29%
kqnpk 28% 1% − − − 0% − − 29%
kqkrb − − − − − 15% 13% 1% 29%
krbpk 28% 0% − − − 0% 0% − 28%
kqbkq 0% 9% 7% 3% 0% 4% 5% 0% 28%
krbbk 27% 0% − − − 0% 0% − 28%
kbbpk 26% 1% − − − 0% 0% − 28%
krnnk 26% 2% − − − 0% − − 28%
kppkb 8% 9% 0% 0% − 3% 7% − 27%
krbnk 26% 0% − − − 0% − − 26%
kqbpk 25% 1% − − − 0% − − 26%
kqpkq 3% 9% 2% 1% 0% 5% 5% 0% 26%
kbpkn 10% 10% 0% 0% − 2% 4% − 26%
kqqqk 25% 0% − − − 0% − − 26%
kppkq 0% 0% 0% 1% 14% 1% 0% 9% 25%
kqbnk 24% 1% − − − 0% − − 25%
kqnnk 24% 1% − − − 0% − − 25%
kqbbk 24% 1% − − − 0% − − 25%
kqkrr − − − − − 5% 14% 5% 24%
knpkn 9% 8% 0% 0% − 1% 4% − 23%
kbbbk 22% 0% − − − 0% 0% − 22%
kqnkq 0% 6% 5% 2% 0% 4% 5% 0% 22%
kbbkp 12% 2% 2% 4% 1% 0% 1% 0% 22%
kbpkr 1% 6% 0% 6% 0% 1% 7% 1% 21%
krbkr 1% 14% 0% 0% 0% 1% 5% 0% 21%
kbbkn 14% 4% − 0% − 1% 1% − 21%
knpkr 1% 5% 0% 7% 0% 1% 6% 1% 20%
kbpkb 5% 8% 0% 0% − 1% 6% − 20%
knpkb 5% 7% 0% 0% − 1% 6% − 19%
knnkp 6% 6% 0% 5% 1% 0% 0% 0% 18%
krnkr 1% 10% 0% 0% 0% 1% 5% 0% 17%
kbbkr 0% 3% 0% 0% 0% 1% 8% 0% 12%
kbnkr 0% 4% 0% 1% 0% 1% 6% 0% 11%
kbnkn 1% 8% − − − 0% 1% − 10%
knnkr − 0% − 2% 0% − 7% 0% 9%
kbbkb 0% 4% − 0% − 0% 3% − 8%
kbnkb 0% 4% − 0% − 1% 3% − 8%
knnkb 0% 0% − − − − 5% − 5%
knnkn 0% 0% − − − − 1% − 1%
kkbbb − − − − − − − − −
kkbbn − − − − − − − − −
kkbbp − − − − − − − − −
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E. Detailed Results for Chess – Best Move Per Piece Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkbnn − − − − − − − − −
kkbnp − − − − − − − − −
kkbpp − − − − − − − − −
kknnn − − − − − − − − −
kknnp − − − − − − − − −
kknpp − − − − − − − − −
kkppp − − − − − − − − −
kkqbb − − − − − − − − −
kkqbn − − − − − − − − −
kkqbp − − − − − − − − −
kkqnn − − − − − − − − −
kkqnp − − − − − − − − −
kkqpp − − − − − − − − −
kkqqb − − − − − − − − −
kkqqn − − − − − − − − −
kkqqp − − − − − − − − −
kkqqq − − − − − − − − −
kkqqr − − − − − − − − −
kkqrb − − − − − − − − −
kkqrn − − − − − − − − −
kkqrp − − − − − − − − −
kkqrr − − − − − − − − −
kkrbb − − − − − − − − −
kkrbn − − − − − − − − −
kkrbp − − − − − − − − −
kkrnn − − − − − − − − −
kkrnp − − − − − − − − −
kkrpp − − − − − − − − −
kkrrb − − − − − − − − −
kkrrn − − − − − − − − −
kkrrp − − − − − − − − −
kkrrr − − − − − − − − −
Mean 11% 2% 0% 0% 1% 4% 7% 11% 37%
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E.4. Figures
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(b) Endgames with 4 pieces (including kings)
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(c) Endgames with 5 pieces (including kings)

Figure E.4.1: Cordel Frequencies for different piece configurations
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E. Detailed Results for Chess – Best Move Per Piece Rule

0.
00

0.
05

0.
10

0.
15

0.
20

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(a) Endgames with 3 pieces (including kings)

0.
00

0.
05

0.
10

0.
15

0.
20

0.14

0.01 0.00 0.00

0.03

0.00 0.00

0.08

0.01 0.00 0.00 0.00
WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(b) Endgames with 4 pieces (including kings)

0.
00

0.
05

0.
10

0.
15

0.
20

0.18

0.02
0.00 0.01

0.06

0.01 0.01

0.11

0.02
0.00 0.00 0.01

WWW WDD WDL WLL DDD DLL LLL WWW WWD WWL DDL LLL
d1 ≥≥ d2 d1 ≥≥ d2 d1 << d2 d1 << d2

(c) Endgames with 5 pieces (including kings)

Figure E.4.2: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with at least three feasible moves.
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E.4. Figures
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Figure E.4.3: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with only two (left) or one (right) feasible
moves.
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E. Detailed Results for Chess – Best Move Per Piece Rule

E.5 Monte Carlo Samples for Endgames with 6

Pieces
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Figure E.5.1: Cordel Frequencies for the 515 different piece configurations.
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Figure E.5.2: Relative frequencies of different types of chess positions in endgames with 6
pieces (including kings) with only two (left) or one (right) feasible moves.
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Appendix F

Detailed Results for Chess –
Best Move Per Piece Type Rule

Refers to page 16.

Overview of the results presented in this chapter:

Endgames with 3 pieces
(Section F.1)

Cordel Instances page 180

Non-Cordel Instances page 180

Endgames with 4 pieces
(Section F.2)

Cordel Instances page 181

Non-Cordel Instances page 182

Endgames with 5 pieces
(Section F.3)

Cordel Instances page 184

Non-Cordel Instances page 189

Figures of the results for endgames with 3, 4, or 5 pieces page 195

(Section F.4)

Monte-Carlo results for endgames with 6 pieces page 198

(Section F.5)
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

F.1 Endgames with 3 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knk − − − − − − − − − − − 0% − 0%
kbk − − − − − − − − − − − 0% − 0%
kqk − − − − − − − 0% − − 0% − − 0%
krk − − − − − − − 5% − − 0% − − 5%
kpk − − − − − − − 15% − − 2% 2% − 18%
kkb − − − − − − − − − − − 100% − 100%
kkn − − − − − − − − − − − 100% − 100%
kkp − − − − − − − − − − − 42% 58% 100%
kkq − − − − − − − − − − − 10% 90% 100%
kkr − − − − − − − − − − − 10% 90% 100%

Mean − − − − − − − 2% − − 0% 26% 24% 52%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knk − − − − − − 100% − 100%
kbk − − − − − − 100% − 100%
kqk − − − − − 100% − − 100%
krk − − − − − 95% − − 95%
kpk − − − − − 60% 22% − 82%
kkb − − − − − − − − −
kkn − − − − − − − − −
kkp − − − − − − − − −
kkq − − − − − − − − −
kkr − − − − − − − − −

Mean − − − − − 25% 22% − 48%
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F.2. Endgames with 4 Pieces

F.2 Endgames with 4 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

knnk − − − − − − − 0% − − − 0% − 0%
krrk − − − − − − − 0% − − 0% − − 0%
kqqk − − − − − − − 4% − − 0% − − 4%
kppk − − − − − − − 4% − − 0% 0% − 4%
kbbk − − − − − − − 5% − − 0% 0% − 5%
kbkn − − − − − − − 0% − − − 7% − 7%
knkn − − − − − − − 0% − − − 8% − 8%
kbkb − − − − − − − 0% − − − 11% − 11%
knkb − − − − − − − 0% − − − 11% − 11%
kqkn − − − − − − − 7% − − 4% 1% − 12%
kqkp − − − − − − − 9% 1% 0% 2% 0% 0% 12%
kbkp − − − − − − − 0% − 13% − 3% 0% 16%
knkp − − − − − − − 0% 0% 15% 0% 3% 0% 17%
kqkb − − − − − − − 16% − − 6% 0% − 22%
krkp − − − − − − − 8% 9% 2% 2% 0% 0% 22%
kpkn − − − − − − − 14% 0% 0% 2% 10% 0% 27%
kpkb − − − − − − − 13% − 0% 4% 13% − 30%
kpkp − − − − − − − 11% 3% 9% 3% 3% 2% 32%
kbkr − − − − − − − − − 19% − 11% 2% 33%
krkn − − − − − − − 26% − − 2% 5% − 33%
krkb − − − − − − − 26% − − 3% 4% − 33%
kqkr − − − − − − − 9% 19% 0% 7% 0% 0% 36%
kbkq − − − − − − − − − 13% − 9% 15% 37%
knkq − − − − − − − − − 10% − 9% 19% 37%
knkr − − − − − − − 0% 0% 22% − 13% 4% 39%
krkr − − − − − − − 7% 14% 7% 4% 8% 0% 41%
kpkr − − − − − − − 4% 8% 7% 3% 5% 16% 44%
krkq − − − − − − − 0% 19% 5% 7% 1% 13% 45%
kpkq − − − − − − − 0% 2% 7% 6% 4% 27% 46%
kqkq − − − − − − − 9% 23% 8% 7% 7% 0% 54%
kqrk 57% 0% − − − − − − − − − − − 57%
kqpk 58% 0% − − − − − 0% − − 0% − − 59%
knpk 49% 7% − − 3% − − 1% − − 0% 0% − 59%
kbpk 52% 5% − − 3% − − 1% − − 0% 0% − 60%
kbnk 52% 9% − − 0% − − 0% − − − − − 62%
krpk 61% 0% − − − − − 0% − − 0% − − 62%
krnk 63% 3% − − − − − − − − − − − 66%

continued on next page
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

krbk 64% 3% − − − − − 0% − − − − − 67%
kqnk 72% 0% − − − − − − − − − − − 73%
kqbk 74% 0% − − − − − 0% − − − − − 75%
kkbb − − − − − − − − − − − 59% 41% 100%
kkbn − − − − − − − − − − − 18% 82% 100%
kkbp − − − − − − − − − − − 17% 83% 100%
kknn − − − − − − − − − − − 100% − 100%
kknp − − − − − − − − − − − 18% 82% 100%
kkpp − − − − − − − − − − − 8% 92% 100%
kkqb − − − − − − − − − − − 9% 91% 100%
kkqn − − − − − − − − − − − 9% 91% 100%
kkqp − − − − − − − − − − − 2% 98% 100%
kkqq − − − − − − − − − − − − 100% 100%
kkqr − − − − − − − − − − − − 100% 100%
kkrb − − − − − − − − − − − 9% 91% 100%
kkrn − − − − − − − − − − − 9% 91% 100%
kkrp − − − − − − − − − − − 2% 98% 100%
kkrr − − − − − − − − − − − − 100% 100%

Mean 11% 1% − − 0% − − 3% 2% 3% 1% 7% 24% 52%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knnk − − − − − − 100% − 100%
krrk − − − − − 100% − − 100%
kqqk − − − − − 96% − − 96%
kppk − − − − − 95% 2% − 96%
kbbk − − − − − 45% 51% − 95%
kbkn − − − − − − 93% − 93%
knkn − − − − − − 92% − 92%
kbkb − − − − − − 89% − 89%
knkb − − − − − − 89% − 89%
kqkn − − − − − 88% 0% − 88%
kqkp − − − − − 87% 1% − 88%
kbkp − − − − − − 79% 5% 84%
knkp − − − − − 0% 70% 13% 83%
kqkb − − − − − 78% 0% − 78%
krkp − − − − − 72% 6% 0% 78%
kpkn − − − − − 16% 57% 0% 73%
kpkb − − − − − 7% 63% − 70%

continued on next page
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F.2. Endgames with 4 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kpkp − − − − − 26% 21% 22% 68%
kbkr − − − − − − 66% 1% 67%
krkn − − − − − 20% 47% − 67%
krkb − − − − − 6% 61% − 67%
kqkr − − − − − 64% 0% − 64%
kbkq − − − − − − 1% 61% 63%
knkq − − − − − − 1% 62% 63%
knkr − − − − − − 54% 7% 61%
krkr − − − − − 4% 55% 0% 59%
kpkr − − − − − 1% 5% 50% 56%
krkq − − − − − 2% 0% 53% 55%
kpkq − − − − − 0% 1% 53% 54%
kqkq − − − − − 3% 43% 0% 46%
kqrk 42% 1% − − − 0% − − 43%
kqpk 36% 0% − − − 5% − − 41%
knpk 28% 10% − − − 3% 1% − 41%
kbpk 28% 8% − − − 4% 1% − 40%
kbnk 32% 6% − − − 0% 0% − 38%
krpk 32% 1% − − − 5% − − 38%
krnk 31% 2% − − − 0% − − 34%
krbk 30% 2% − − − 0% − − 33%
kqnk 27% 1% − − − 0% − − 27%
kqbk 24% 1% − − − 0% − − 25%
kkbb − − − − − − − − −
kkbn − − − − − − − − −
kkbp − − − − − − − − −
kknn − − − − − − − − −
kknp − − − − − − − − −
kkpp − − − − − − − − −
kkqb − − − − − − − − −
kkqn − − − − − − − − −
kkqp − − − − − − − − −
kkqq − − − − − − − − −
kkqr − − − − − − − − −
kkrb − − − − − − − − −
kkrn − − − − − − − − −
kkrp − − − − − − − − −
kkrr − − − − − − − − −

Mean 6% 1% − − − 15% 21% 6% 48%
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

F.3 Endgames with 5 Pieces

Cordel Instances

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kpppk − − − − − − − 0% − − 0% 0% − 0%
krrrk − − − − − − − 1% − − 0% − − 1%
kqqkp − − − − − − − 1% 0% − 1% 0% 0% 2%
kbbbk − − − − − − − 3% − − 0% 0% − 3%
kqqkn − − − − − − − 0% − − 3% 0% − 3%
kqqkb − − − − − − − 0% − − 3% − − 3%
kqqkr − − − − − − − 0% 0% − 4% 0% 0% 5%
knnkn − − − − − − − 0% − − 0% 7% − 7%
krrkp − − − − − − − 5% 1% 0% 2% 0% 0% 8%
knnkb − − − − − − − 0% − − 0% 9% − 9%
kqqqk − − − − − − − 11% − − 0% − − 11%
krrkn − − − − − − − 8% − − 5% 0% − 13%
kbknn − − − − − − − 0% − 0% − 14% 0% 14%
knnkr − − − − − − − 0% 0% 2% 0% 12% 0% 15%
knknn − − − − − − − 0% − 0% − 15% 0% 15%
kbbkn − − − − − − − 10% − − 2% 4% − 16%
krknn − − − − − − − 5% 0% 0% 0% 12% 0% 18%
kbbkp − − − − − − − 7% 4% 6% 1% 1% 0% 19%
krrkb − − − − − − − 15% − − 4% 0% − 19%
kbbkb − − − − − − − 12% 0% 0% 2% 7% 0% 20%
knnnk − − − − − − − 22% − − 0% 0% − 22%
kbbkr − − − − − − − 13% 0% 1% 2% 7% 0% 22%
kppkp − − − − − − − 11% 5% 4% 3% 0% 0% 23%
kqkpp − − − − − − − 15% 5% 0% 3% 0% 0% 23%
kqknp − − − − − − − 10% 6% 0% 6% 1% 0% 23%
knkpp − − − − − − − 0% 0% 19% 0% 4% 1% 24%
knnkp − − − − − − − 15% 0% 6% 1% 2% 0% 24%
kbkpp − − − − − − − 0% 0% 20% 0% 4% 1% 25%
krkbb − − − − − − − 1% 0% 9% 0% 14% 1% 25%
kppkn − − − − − − − 17% 0% 0% 4% 4% 0% 25%
kbknp − − − − − − − 0% 0% 17% 0% 7% 2% 26%
knknp − − − − − − − 0% 0% 17% 0% 7% 3% 27%
kqrkq 10% 1% 1% 1% 0% 0% 0% 2% 4% 0% 8% 2% 0% 29%
knkbb − − − − − − − 0% 0% 9% − 14% 6% 30%
kbkbb − − − − − − − 0% 0% 9% 0% 19% 1% 30%
krkbn − − − − − − − 3% 0% 13% 0% 12% 1% 30%
kqknn − − − − − − − 21% − 0% 8% 2% − 31%

continued on next page
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F.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kbkbn − − − − − − − 0% 0% 14% 0% 16% 1% 31%
kppkb − − − − − − − 19% 0% 0% 7% 5% 0% 31%
kqkbp − − − − − − − 12% 11% 1% 7% 1% 0% 32%
kqkbn − − − − − − − 9% 11% 0% 9% 1% 1% 32%
knkbp − − − − − − − 0% 0% 19% 0% 9% 4% 32%
kbkbp − − − − − − − 0% 0% 19% 0% 10% 2% 32%
krkpp − − − − − − − 7% 14% 8% 3% 0% 1% 32%
kpkpp − − − − − − − 6% 5% 10% 2% 3% 7% 33%
knkrp − − − − − − − 0% 0% 15% 0% 5% 13% 33%
knkbn − − − − − − − 0% 0% 17% − 15% 2% 35%
knkqp − − − − − − − 0% 0% 6% 0% 6% 23% 35%
kbkqp − − − − − − − 0% 0% 9% 0% 7% 19% 35%
kbkrp − − − − − − − 0% 0% 20% 0% 6% 10% 35%
krrkr − − − − − − − 28% 0% 0% 8% 0% 0% 37%
kpknn − − − − − − − 8% 0% 9% 1% 15% 4% 37%
kpknp − − − − − − − 6% 5% 12% 2% 6% 9% 38%
kqqkq − − − − − − − 30% 0% 0% 7% 0% 0% 38%
kpkrp − − − − − − − 1% 7% 4% 1% 2% 23% 39%
knkrn − − − − − − − 0% 0% 16% 0% 5% 17% 39%
kqkbb − − − − − − − 19% 8% 0% 10% 2% 0% 39%
knkrr − − − − − − − − 0% 9% 0% 5% 26% 40%
kbkrr − − − − − − − − − 15% − 6% 20% 40%
krkqq − − − − − − − − 0% 0% 0% 0% 40% 40%
knkrb − − − − − − − 0% 0% 15% 0% 7% 19% 40%
kpkbp − − − − − − − 4% 6% 10% 2% 6% 12% 40%
krkqp − − − − − − − 0% 13% 5% 5% 1% 16% 41%
kqrkr 32% 0% 0% 0% 0% − − 2% 0% 0% 6% 0% 0% 41%
kbkqn − − − − − − − 0% 0% 12% 0% 8% 21% 41%
kbkrn − − − − − − − 0% 0% 22% − 5% 14% 41%
kbkqr − − − − − − − − − 6% − 5% 30% 41%
knkqn − − − − − − − 0% 0% 9% − 8% 24% 42%
kpkbb − − − − − − − 6% 3% 5% 1% 18% 9% 42%
krknp − − − − − − − 18% 2% 14% 1% 6% 1% 42%
kbbkq − − − − − − − 0% 11% 14% 3% 4% 10% 42%
kbkrb − − − − − − − 0% 0% 20% 0% 7% 16% 43%
knkqr − − − − − − − − 0% 3% 0% 4% 36% 44%
kpkqp − − − − − − − 0% 1% 4% 2% 3% 33% 44%
krkrn − − − − − − − 1% 2% 22% 0% 16% 3% 44%
kbkqb − − − − − − − 0% 0% 11% 0% 8% 25% 44%
knkqb − − − − − − − 0% 0% 8% − 8% 28% 44%
kbkqq − − − − − − − − − 0% − 0% 44% 44%
kpkrn − − − − − − − 1% 3% 10% 1% 6% 25% 44%
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

krkqr − − − − − − − 0% 0% 12% 0% 5% 28% 45%
kqrrk 45% 0% − − − − − 0% − − 0% − − 45%
kppkr − − − − − − − 9% 12% 6% 6% 4% 9% 45%
krkbp − − − − − − − 16% 2% 18% 3% 6% 2% 45%
kpkbn − − − − − − − 4% 5% 12% 1% 7% 16% 46%
kpkrb − − − − − − − 0% 2% 10% 0% 6% 28% 46%
kqqrk 46% 0% − − − − − 0% − − 0% − − 46%
kpkrr − − − − − − − 0% 1% 5% 0% 1% 40% 46%
krkrp − − − − − − − 3% 12% 17% 3% 7% 5% 47%
krkqn − − − − − − − 0% 2% 19% 1% 7% 18% 47%
krkqb − − − − − − − 0% 1% 19% 0% 7% 20% 47%
kqkrp − − − − − − − 10% 25% 3% 8% 1% 1% 47%
knnkq − − − − − − − 0% 0% 26% 0% 9% 12% 47%
krkrb − − − − − − − 0% 0% 27% 0% 16% 4% 48%
kppkq − − − − − − − 0% 6% 11% 9% 1% 21% 48%
knkqq − − − − − − − − − 0% − 0% 49% 49%
krkrr − − − − − − − 0% 0% 24% 0% 6% 19% 49%
kpkqn − − − − − − − 0% 1% 7% 1% 8% 33% 50%
kqrkb 46% 0% − − 0% − − 1% − − 4% 0% − 51%
kpkqr − − − − − − − 0% 0% 1% 0% 1% 50% 51%
kpkqb − − − − − − − 0% 0% 6% 0% 8% 37% 52%
krpkb 32% 9% 0% − 1% − − 3% 0% 0% 6% 1% 0% 53%
kqrkn 50% 0% − − − − − 0% − − 4% 0% − 53%
krpkn 39% 6% 0% 0% 1% 0% − 1% 0% 0% 5% 1% 0% 54%
kqrkp 53% 0% 0% 0% 0% − − 0% 0% − 1% 0% 0% 54%
kqpkp 50% 2% 0% 1% 0% − − 0% 0% − 2% 0% 0% 55%
kqbkr 38% 7% 0% 0% 0% 0% − 4% 0% 0% 5% 0% 0% 55%
kqpkn 47% 3% 0% 0% − − − 0% 0% − 5% 0% 0% 55%
kqkqq − − − − − − − 0% 1% 23% 0% 8% 23% 55%
knnpk 52% 3% − − 1% − − 1% − − 0% 0% − 57%
kqpkb 44% 5% 0% − 0% − − 3% − − 6% 0% 0% 57%
krpkp 47% 2% 1% 5% 0% 0% 0% 0% 0% 0% 2% 0% 0% 59%
kbbpk 55% 2% − − 1% − − 0% − − 0% 0% − 59%
krbkn 46% 7% − − 0% − − 0% − − 5% 1% − 59%
kpkqq − − − − − − − 0% 0% 0% 0% 0% 59% 59%
krnkb 40% 11% − − 0% − − 2% 0% 0% 5% 1% − 60%
kqkqn − − − − − − − 6% 19% 14% 6% 10% 3% 60%
knpkp 28% 9% 2% 4% 7% 3% 3% 1% 0% 0% 2% 0% 0% 60%
krbkb 41% 10% − − 0% − − 2% − − 5% 1% 0% 60%
kqpkr 36% 2% 1% 6% 0% 0% 0% 2% 4% 0% 8% 0% 0% 60%
krnkn 46% 8% − − 0% − − 0% 0% 0% 5% 1% − 60%
kqppk 60% 0% − − 0% − − 0% − − 0% − − 60%
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F.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqnkr 38% 10% 0% 0% 0% 0% − 5% 1% 0% 6% 0% 0% 60%
kqkqr − − − − − − − 1% 18% 17% 5% 3% 17% 61%
kbpkp 34% 8% 2% 5% 5% 2% 2% 1% 0% 0% 2% 0% 0% 61%
krbkp 52% 6% 0% 0% 1% 0% 0% 0% 0% 0% 2% 0% 0% 61%
kqrpk 62% 0% − − 0% − − 0% − − 0% − − 62%
kbnnk 60% 3% − − 0% − − 0% − − 0% − − 62%
kbnkp 38% 11% 2% 4% 2% 2% 1% 0% 0% 0% 2% 0% 0% 63%
krnkp 51% 7% 1% 1% 1% 0% 0% 0% 0% 0% 2% 0% 0% 63%
kqbkb 50% 5% − − 0% − − 3% − − 5% 0% 0% 63%
kqkrn − − − − − − − 28% 18% 4% 7% 5% 2% 63%
kqkqb − − − − − − − 5% 18% 19% 5% 11% 5% 64%
kqnkn 55% 4% − − − − − 0% − − 4% 1% − 64%
kqkqp − − − − − − − 3% 24% 21% 6% 6% 4% 64%
kqrnk 64% 0% − − − − − − − − − − − 64%
kbbnk 62% 2% − − 0% − − 0% − − − − − 64%
kqbkn 57% 3% − − 0% − − 0% − − 4% 1% − 65%
kqrbk 65% 0% − − − − − − − − − − − 65%
kqnkb 51% 7% − − 0% − − 3% 0% − 5% 0% − 66%
kqnkp 60% 4% 0% 0% 0% 0% − 0% 0% 0% 2% 0% 0% 66%
krppk 66% 0% − − 0% − − 0% − − 0% − − 66%
krnnk 64% 2% − − 0% − − 0% − − 0% − − 66%
krbkq 0% 3% 6% 6% 13% 13% 3% 1% 3% 3% 7% 3% 5% 67%
kqbbk 67% 0% − − − − − 0% − − 0% − − 67%
krbbk 65% 2% − − 0% − − 0% − − 0% − − 67%
kqbkp 63% 2% 0% 0% 0% − − 0% 0% 0% 2% 0% 0% 67%
knppk 67% 0% − − 0% − − 0% − − 0% 0% − 67%
krpkr 10% 8% 2% 6% 21% 1% 0% 2% 2% 2% 8% 5% 0% 68%
kbppk 67% 0% − − 0% − − 0% − − 0% 0% − 68%
krpkq 0% 2% 3% 13% 1% 4% 18% 1% 5% 1% 8% 1% 10% 68%
kqnnk 68% 0% − − − − − 0% − − 0% − − 68%
krnkq 0% 2% 5% 9% 11% 12% 6% 1% 3% 3% 7% 2% 7% 69%
krrpk 69% 0% − − − − − 0% − − 0% − − 69%
kbnpk 69% 0% − − 0% − − 0% − − 0% − − 69%
kbpkq 0% 0% 1% 7% 1% 5% 28% 0% 3% 1% 7% 2% 13% 69%
kbnkq 0% 0% 2% 10% 0% 4% 33% 0% 3% 1% 7% 1% 11% 70%
krnpk 71% 0% − − 0% − − 0% − − 0% − − 71%
knpkq 0% 0% 1% 6% 1% 6% 30% 0% 2% 1% 7% 2% 16% 71%
kqnpk 71% 0% − − 0% − − 0% − − 0% − − 71%
kqkrb − − − − − − − 30% 19% 7% 7% 6% 2% 71%
krbpk 72% 0% − − 0% − − 0% − − 0% − − 72%
kqbkq 0% 13% 7% 4% 29% 1% 0% 2% 3% 2% 6% 5% 0% 72%
krbnk 74% 0% − − 0% − − − − − − − − 74%
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kqbpk 74% 0% − − − − − 0% − − 0% − − 74%
kqpkq 2% 13% 5% 11% 15% 1% 0% 4% 7% 3% 7% 6% 0% 74%
kbpkn 15% 15% 0% 0% 36% 0% − 2% 0% 0% 3% 4% 0% 74%
krrkq − − − − − − − 18% 28% 14% 7% 4% 3% 75%
kqbnk 75% 0% − − 0% − − − − − − − − 75%
krrbk 76% 0% − − 0% − − 0% − − 0% − − 76%
kqkrr − − − − − − − 17% 25% 17% 5% 6% 6% 76%
krrnk 76% 0% − − − − − 0% − − − − − 77%
kqqbk 75% 2% − − − − − 0% − − 0% − − 77%
knpkn 12% 14% 0% 0% 42% 0% − 1% 0% 0% 2% 5% 0% 77%
kqqpk 75% 3% − − − − − 0% − − 0% − − 78%
kqnkq 0% 10% 7% 6% 32% 1% 0% 2% 4% 3% 6% 5% 0% 78%
kbpkr 1% 13% 1% 0% 38% 7% 0% 3% 0% 3% 4% 7% 1% 79%
krbkr 1% 18% 0% 0% 49% 0% 0% 2% 0% 0% 4% 5% 0% 79%
knpkr 1% 12% 1% 1% 37% 8% 1% 2% 0% 2% 4% 9% 2% 80%
kbpkb 6% 15% 0% − 47% 0% − 2% 0% 0% 4% 6% 0% 80%
knpkb 6% 14% 0% − 49% − − 2% 0% 0% 4% 6% 0% 81%
kqqnk 79% 2% − − − − − 0% − − − − − 81%
krnkr 1% 17% 0% 0% 51% 0% 0% 2% 0% 1% 4% 6% 0% 83%
kbnkr 0% 15% 0% 0% 60% 0% 0% 2% 0% 1% 4% 6% 0% 89%
kbnkn 2% 19% 0% − 62% − − 1% 0% 0% 1% 6% − 90%
kbnkb 0% 16% 0% − 66% − − 1% − 0% 3% 5% 0% 92%
kkbbb − − − − − − − − − − − 31% 69% 100%
kkbbn − − − − − − − − − − − 4% 96% 100%
kkbbp − − − − − − − − − − − 7% 93% 100%
kkbnn − − − − − − − − − − − 8% 92% 100%
kkbnp − − − − − − − − − − − 1% 99% 100%
kkbpp − − − − − − − − − − − 1% 99% 100%
kknnn − − − − − − − − − − − 25% 75% 100%
kknnp − − − − − − − − − − − 12% 88% 100%
kknpp − − − − − − − − − − − 1% 99% 100%
kkppp − − − − − − − − − − − 1% 99% 100%
kkqbb − − − − − − − − − − − 4% 96% 100%
kkqbn − − − − − − − − − − − 0% 100% 100%
kkqbp − − − − − − − − − − − 0% 100% 100%
kkqnn − − − − − − − − − − − 8% 92% 100%
kkqnp − − − − − − − − − − − 0% 100% 100%
kkqpp − − − − − − − − − − − 0% 100% 100%
kkqqb − − − − − − − − − − − − 100% 100%
kkqqn − − − − − − − − − − − − 100% 100%
kkqqp − − − − − − − − − − − − 100% 100%
kkqqq − − − − − − − − − − − − 100% 100%
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F.3. Endgames with 5 Pieces

WWW WDD WDL WLL DDD DLL LLL WD WL DL W D L Sum
d1 ≥ d2 d1 ≥ d2

kkqqr − − − − − − − − − − − − 100% 100%
kkqrb − − − − − − − − − − − − 100% 100%
kkqrn − − − − − − − − − − − − 100% 100%
kkqrp − − − − − − − − − − − 0% 100% 100%
kkqrr − − − − − − − − − − − − 100% 100%
kkrbb − − − − − − − − − − − 4% 96% 100%
kkrbn − − − − − − − − − − − 0% 100% 100%
kkrbp − − − − − − − − − − − 0% 100% 100%
kkrnn − − − − − − − − − − − 8% 92% 100%
kkrnp − − − − − − − − − − − 0% 100% 100%
kkrpp − − − − − − − − − − − 0% 100% 100%
kkrrb − − − − − − − − − − − − 100% 100%
kkrrn − − − − − − − − − − − − 100% 100%
kkrrp − − − − − − − − − − − 0% 100% 100%
kkrrr − − − − − − − − − − − − 100% 100%

Mean 15% 2% 0% 0% 3% 0% 1% 3% 2% 4% 2% 4% 21% 57%

Non-Cordel Instances

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kpppk − − − − − 100% 0% − 100%
krrrk − − − − − 99% − − 99%
kqqkp − − − − − 98% 0% − 98%
kbbbk − − − − − 71% 26% − 97%
kqqkn − − − − − 97% − − 97%
kqqkb − − − − − 97% − − 97%
kqqkr − − − − − 95% 0% − 95%
knnkn − − − − − 0% 93% − 93%
krrkp − − − − − 92% 0% − 92%
knnkb − − − − − 0% 91% − 91%
kqqqk − − − − − 89% − − 89%
krrkn − − − − − 87% 0% − 87%
kbknn − − − − − − 86% − 86%
knnkr − − − − − 0% 85% 0% 85%
knknn − − − − − − 85% 0% 85%
kbbkn − − − − − 36% 48% − 84%
krknn − − − − − 1% 81% − 82%
kbbkp − − − − − 37% 43% 2% 81%
krrkb − − − − − 80% 0% − 81%
kbbkb − − − − − 2% 77% − 80%
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knnnk − − − − − 77% 1% − 78%
kbbkr − − − − − 2% 76% 0% 78%
kppkp − − − − − 58% 6% 13% 77%
kqkpp − − − − − 76% 1% 0% 77%
kqknp − − − − − 75% 1% 0% 77%
knkpp − − − − − 0% 40% 36% 76%
knnkp − − − − − 15% 58% 2% 76%
kbkpp − − − − − 0% 51% 24% 75%
krkbb − − − − − 0% 74% 0% 75%
kppkn − − − − − 43% 31% 0% 75%
kbknp − − − − − 0% 64% 10% 74%
knknp − − − − − 0% 53% 20% 73%
kqrkq 29% 16% 16% 0% 0% 9% 1% 0% 71%
knkbb − − − − − − 43% 27% 70%
kbkbb − − − − − − 70% 0% 70%
krkbn − − − − − 0% 69% 0% 70%
kqknn − − − − − 66% 4% − 69%
kbkbn − − − − − − 69% 0% 69%
kppkb − − − − − 28% 40% − 69%
kqkbp − − − − − 67% 1% 0% 68%
kqkbn − − − − − 68% 0% 0% 68%
knkbp − − − − − 0% 46% 23% 68%
kbkbp − − − − − 0% 57% 11% 68%
krkpp − − − − − 51% 10% 6% 68%
kpkpp − − − − − 14% 6% 47% 67%
knkrp − − − − − 0% 5% 62% 67%
knkbn − − − − − − 63% 2% 65%
knkqp − − − − − 0% 1% 64% 65%
kbkqp − − − − − − 1% 64% 65%
kbkrp − − − − − − 7% 58% 65%
krrkr − − − − − 62% 0% − 63%
kpknn − − − − − 4% 49% 9% 63%
kpknp − − − − − 10% 10% 42% 62%
kqqkq − − − − − 61% 0% 0% 62%
kpkrp − − − − − 1% 0% 60% 61%
knkrn − − − − − − 3% 58% 61%
kqkbb − − − − − 59% 1% 0% 61%
knkrr − − − − − − 1% 59% 60%
kbkrr − − − − − − 2% 58% 60%
krkqq − − − − − − 0% 60% 60%
knkrb − − − − − − 3% 57% 60%
kpkbp − − − − − 5% 7% 48% 60%
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F.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

krkqp − − − − − 1% 0% 58% 59%
kqrkr 40% 12% 0% 0% − 7% 0% 0% 59%
kbkqn − − − − − − 1% 58% 59%
kbkrn − − − − − − 5% 54% 59%
kbkqr − − − − − − 1% 58% 59%
knkqn − − − − − − 1% 58% 58%
kpkbb − − − − − 2% 31% 25% 58%
krknp − − − − − 9% 48% 1% 58%
kbbkq − − − − − 1% 1% 55% 58%
kbkrb − − − − − − 4% 53% 57%
knkqr − − − − − − 0% 56% 56%
kpkqp − − − − − 0% 0% 56% 56%
krkrn − − − − − 0% 56% 1% 56%
kbkqb − − − − − − 1% 55% 56%
knkqb − − − − − − 1% 55% 56%
kbkqq − − − − − − 0% 56% 56%
kpkrn − − − − − 0% 2% 54% 56%
krkqr − − − − − − 1% 54% 55%
kqrrk 51% 3% − − − 0% − − 55%
kppkr − − − − − 9% 10% 36% 55%
krkbp − − − − − 3% 49% 2% 55%
kpkbn − − − − − 4% 4% 47% 54%
kpkrb − − − − − 0% 1% 52% 54%
kqqrk 47% 7% − − − 0% − − 54%
kpkrr − − − − − 0% 0% 53% 54%
krkrp − − − − − 2% 30% 21% 53%
krkqn − − − − − 0% 2% 51% 53%
krkqb − − − − − 0% 2% 51% 53%
kqkrp − − − − − 49% 3% 1% 53%
knnkq − − − − − − 8% 45% 53%
krkrb − − − − − 0% 51% 1% 52%
kppkq − − − − − 1% 1% 50% 52%
knkqq − − − − − − − 51% 51%
krkrr − − − − − − 4% 47% 51%
kpkqn − − − − − 0% 0% 50% 50%
kqrkb 37% 7% − − − 6% 0% − 49%
kpkqr − − − − − 0% 0% 49% 49%
kpkqb − − − − − 0% 0% 48% 48%
krpkb 21% 17% 0% 0% − 8% 1% − 47%
kqrkn 40% 2% − − − 4% 0% − 47%
krpkn 27% 12% 0% 0% − 6% 1% − 46%
kqrkp 44% 0% 0% − − 1% 0% − 46%
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kqpkp 35% 2% 0% 0% − 7% 0% − 45%
kqbkr 23% 16% 0% 0% − 5% 0% 0% 45%
kqpkn 33% 3% 0% − − 9% 0% − 45%
kqkqq − − − − − 0% 2% 42% 45%
knnpk 30% 8% − − − 5% 1% − 43%
kqpkb 29% 3% 0% − − 10% 0% − 43%
krpkp 30% 3% 2% 0% 0% 6% 0% 0% 41%
kbbpk 32% 3% − − − 6% 0% − 41%
krbkn 29% 9% − − − 2% 0% − 41%
kpkqq − − − − − − 0% 41% 41%
krnkb 23% 13% − − − 3% 1% − 40%
kqkqn − − − − − 2% 37% 1% 40%
knpkp 17% 11% 1% 2% 4% 4% 1% 0% 40%
krbkb 23% 13% − − − 3% 1% − 40%
kqpkr 23% 3% 3% 0% 0% 11% 0% 0% 40%
krnkn 28% 10% − − − 2% 0% − 40%
kqppk 39% 0% − − − 0% − − 40%
kqnkr 22% 12% 1% 0% − 5% 0% 0% 40%
kqkqr − − − − − 1% 2% 37% 39%
kbpkp 19% 10% 1% 1% 2% 4% 1% 0% 39%
krbkp 28% 9% 1% 0% 0% 1% 0% 0% 39%
kqrpk 37% 1% − − − 0% − − 38%
kbnnk 35% 2% − − − 0% 0% − 38%
kbnkp 24% 7% 3% 1% 2% 1% 0% 0% 37%
krnkp 28% 8% 1% 0% 0% 1% 0% 0% 37%
kqbkb 25% 8% − − − 4% 0% − 37%
kqkrn − − − − − 26% 11% 0% 37%
kqkqb − − − − − 2% 32% 2% 36%
kqnkn 28% 4% − − − 3% 0% − 36%
kqkqp − − − − − 2% 24% 9% 36%
kqrnk 35% 1% − − − 0% − − 36%
kbbnk 34% 2% − − − 0% 0% − 36%
kqbkn 27% 4% − − − 3% 0% − 35%
kqrbk 34% 1% − − − 0% − − 35%
kqnkb 24% 7% − − − 4% 0% − 34%
kqnkp 27% 5% 0% 0% − 1% 0% − 34%
krppk 33% 0% − − − 0% 0% − 34%
krnnk 31% 3% − − − 0% 0% − 34%
krbkq 0% 2% 7% 14% 2% 3% 2% 3% 33%
kqbbk 32% 2% − − − 0% − − 33%
krbbk 32% 1% − − − 0% 0% − 33%
kqbkp 26% 5% 0% − − 1% 0% − 33%
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F.3. Endgames with 5 Pieces

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

knppk 32% 1% − − − 0% 0% − 33%
krpkr 10% 12% 2% 1% 0% 4% 3% 0% 32%
kbppk 31% 0% − − − 1% 0% − 32%
krpkq 0% 1% 3% 3% 13% 2% 1% 9% 32%
kqnnk 31% 1% − − − 0% − − 32%
krnkq 0% 1% 5% 12% 6% 2% 1% 4% 31%
krrpk 24% 0% − − − 7% 0% − 31%
kbnpk 31% 0% − − − 0% 0% − 31%
kbpkq 0% 0% 1% 2% 15% 1% 0% 11% 31%
kbnkq 0% 0% 2% 1% 17% 2% 0% 8% 30%
krnpk 29% 0% − − − 0% 0% − 29%
knpkq 0% 0% 1% 2% 15% 1% 0% 10% 29%
kqnpk 28% 1% − − − 0% − − 29%
kqkrb − − − − − 15% 13% 1% 29%
krbpk 28% 0% − − − 0% 0% − 28%
kqbkq 0% 9% 7% 3% 0% 4% 5% 0% 28%
krbnk 26% 0% − − − 0% − − 26%
kqbpk 25% 1% − − − 0% − − 26%
kqpkq 3% 9% 2% 1% 0% 5% 5% 0% 26%
kbpkn 10% 10% 0% 0% − 2% 4% − 26%
krrkq − − − − − 5% 19% 2% 25%
kqbnk 24% 1% − − − 0% − − 25%
krrbk 23% 1% − − − 0% − − 24%
kqkrr − − − − − 5% 14% 5% 24%
krrnk 23% 1% − − − 0% − − 23%
kqqbk 18% 4% − − − 0% − − 23%
knpkn 9% 8% 0% 0% − 1% 4% − 23%
kqqpk 14% 2% − − − 7% − − 22%
kqnkq 0% 6% 5% 2% 0% 4% 5% 0% 22%
kbpkr 1% 6% 0% 6% 0% 1% 7% 1% 21%
krbkr 1% 14% 0% 0% 0% 1% 5% 0% 21%
knpkr 1% 5% 0% 7% 0% 1% 6% 1% 20%
kbpkb 5% 8% 0% 0% − 1% 6% − 20%
knpkb 5% 7% 0% 0% − 1% 6% − 19%
kqqnk 15% 3% − − − 0% − − 19%
krnkr 1% 10% 0% 0% 0% 1% 5% 0% 17%
kbnkr 0% 4% 0% 1% 0% 1% 6% 0% 11%
kbnkn 1% 8% − − − 0% 1% − 10%
kbnkb 0% 4% − 0% − 1% 3% − 8%
kkbbb − − − − − − − − −
kkbbn − − − − − − − − −
kkbbp − − − − − − − − −
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F. Detailed Results for Chess – Best Move Per Piece Type Rule

WWW WWD WWL DDL LLL WW DD LL Sum
d1 < d2 d1 < d2

kkbnn − − − − − − − − −
kkbnp − − − − − − − − −
kkbpp − − − − − − − − −
kknnn − − − − − − − − −
kknnp − − − − − − − − −
kknpp − − − − − − − − −
kkppp − − − − − − − − −
kkqbb − − − − − − − − −
kkqbn − − − − − − − − −
kkqbp − − − − − − − − −
kkqnn − − − − − − − − −
kkqnp − − − − − − − − −
kkqpp − − − − − − − − −
kkqqb − − − − − − − − −
kkqqn − − − − − − − − −
kkqqp − − − − − − − − −
kkqqq − − − − − − − − −
kkqqr − − − − − − − − −
kkqrb − − − − − − − − −
kkqrn − − − − − − − − −
kkqrp − − − − − − − − −
kkqrr − − − − − − − − −
kkrbb − − − − − − − − −
kkrbn − − − − − − − − −
kkrbp − − − − − − − − −
kkrnn − − − − − − − − −
kkrnp − − − − − − − − −
kkrpp − − − − − − − − −
kkrrb − − − − − − − − −
kkrrn − − − − − − − − −
kkrrp − − − − − − − − −
kkrrr − − − − − − − − −
Mean 8% 2% 0% 0% 0% 10% 10% 12% 43%
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F.4. Figures
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(b) Endgames with 4 pieces (including kings)
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(c) Endgames with 5 pieces (including kings)

Figure F.4.1: Cordel Frequencies for different piece configurations
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F. Detailed Results for Chess – Best Move Per Piece Type Rule
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Figure F.4.2: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with at least three feasible moves.
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Figure F.4.3: Relative frequencies of different types of chess positions in endgames with 3,
4, or 5 pieces (including kings) with only two (left) or one (right) feasible
moves.
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F.5 Monte Carlo Samples for Endgames with 6

Pieces
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Figure F.5.1: Cordel Frequencies for the 515 different piece configurations.
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Figure F.5.2: Relative frequencies of different types of chess positions in endgames with 6
pieces (including kings) with only two (left) or one (right) feasible moves.

198



Appendix G

Two Detailed Shortest Path
Examples for the Penalty Method

Refers to page 28.

Example G.1
We consider the shortest s − t path problem on the undirected graph shown in Figure
G.1-(a) where the path s− a− b− t (marked in red) is the optimal solution.
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1.5 2 3

0

0

1.5 2 3
s a

b
t

(a) Optimal solution s− a− b− t.

5

10

1.5 2 3

0

0

1.5 2 3
s a

b
t

(b) Remaining simple s − t paths (paths
without cycles): s − b − t, s − a − t,
and s− b− a− t.

Figure G.1: Graph with weights w(·) (values in black) and penalties p(·) (values in red) for
each edge.

Again we use a weight vector w representing the weights of the edges in order to trans-
form the optimization problem in the requested form min

B∈S
w′B.

w = [ 1.5︸︷︷︸
=w(s−a)

, 5︸︷︷︸
=w(s−b)

, 2︸︷︷︸
=w(a−b)

, 10︸︷︷︸
=w(a−t)

, 3︸︷︷︸
=w(b−t)

]

Thus the optimal path s− a− b− t is represented by

B(0) = [ 1︸︷︷︸
(s−a)

, 0, 1︸︷︷︸
(a−b)

, 0, 1︸︷︷︸
(b−t)

] .

Therewith we can specify the canonical penalty vector which is

p = [ 1.5︸︷︷︸
w(s−a)

, 0, 2︸︷︷︸
w(a−b)

, 0, 3︸︷︷︸
w(b−t)

] .

The canonical penalty vector p is also shown in Figure G.1 represented by the red values.
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G. Two Detailed Shortest Path Examples for the Penalty Method

Now we consider all s − t paths without cycles which are s − a − b − t, s − b − t,
s − a − t, and s − b − a − t (c.f. Figure G.1-(a) and (b)). With the penalty vector p
we can compute the penalized part p(·) for each of the four paths. Together with the
weights w(·) we can compute fε(·) = w(·) + ε · p(·) depending on ε. The following chart
shows for each of the four chosen paths it’s weight w(·), it’s punished part p(·) and it’s
penalized value fε(·).

path P w(P ) p(P ) fε(P )
s− a− b− t 6.5 6.5 6.5 + 6.5 · ε
s− b− t 8 3 8 + 3 · ε
s− a− t 11.5 1.5 11.5 + 1.5 · ε

s− b− a− t 17 2 17 + 2 · ε

As we can see, the penalized values fε(·) are linear in ε for each path. Figure G.2 shows
these linear functions. The bold lines indicate for each ε the smallest punished value
which implicates that the related path is a penalty alternative for this penalty parameter
ε.

1 2 3 4 5

6

12

18

24

ε1 ε20

ε

fε(·)

fε(s− a− b− t) = 6.5 + 6.5 · ε
fε(s− b− t) = 8 + 3 · ε
fε(s− a− t) = 11.5 + 1.5 · ε
fε(s− b− a− t) = 17 + 2 · ε

Figure G.2: Penalized values fε(P ) of the four paths s− a− b− t, s− b− t, s− a− t, and
s− b− a− t

We summarize without proof:

1. For each ε in the interval
[
0, ε1 = 3

7
≈ 0.43

]
the optimal solution s− a− b− t is an ε-penalty alternative.

2. For each ε in the interval
[
ε1 = 3

7
≈ 0.43, ε2 = 7

3
≈ 2.33

]
s− b− t is an ε-penalty alternative.

3. For each ε in the interval
[
ε2 = 7

3
≈ 2.33,∞

]
s− a− t is an ε-penalty alternative.

Note that the intervall
[
ε2 = 7

3
≈ 2.33,∞

]
covers each ε ≥ 7

3
as well as ε =∞ as

penalty parameter.
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4. There exists no 0 ≤ ε ≤ ∞ for which the path s− b− a− t is an ε-penalty alter-
native. Furthermore it can be shown that the unconsidered paths which contain
cycles (e.g. s− b− a− s− b− t) are for no 0 ≤ ε ≤ ∞ penalty alternative, too.

Thus we can decompose the interval [0,∞] into three subintervals [0, ε1] , [ε1, ε2] , [ε2,∞]
and for each of these three intervals we have one representative which is optimal for
every ε in the subinterval.

In Section 2.3 we will have a deeper look at this interval representation. Besides we
will show how to compute the so called threshold parameters ε1 = 3

7
and ε2 = 7

3
which

provide the interval decomposition.

The next Example G.2 points out that the penalty alternatives also depend on the
graph representation.

Example G.2
In contrast to Example G.1 we now represent the graph shown in Figure G.1-(a) as a
directed graph. Therefore we represent each undirected edge {u, v} as the directed edge
(u, v) and the directed edge in the opposite direction whereas both edges have the same
weight as {u, v}. Therewith we get the directed graph shown in Figure G.3. Of course,
s− a− b− t is still the shortest s− t path, because we changed only the representation
of the optimization problem.
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1.5 2 3
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b
t

(a) Optimal solution s− a− b− t.

5
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1.5 2 3

5

10

1.5 2 3
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a

b
t

(b) Remaining simple s− t paths: s− b− t,
s− a− t, and s− b− a− t.

Figure G.3: Representation of the graph from Example G.1 as directed graph. Again the
red marked path s− a− b− t is the shortest s− t path.

Again we use a weight vector w representing the weights of the edges. In fact this is
the same weight vector as in Example G.1 but with a copy of each weight for the edge
in opposite direction.

w = [ 1.5, 1.5︸ ︷︷ ︸
(s−a),(a−s)

, 5, 5︸︷︷︸
(s−b),(b−s)

, 2, 2︸︷︷︸
(a−b),(b−a)

, 10, 10︸ ︷︷ ︸
(a−t),(t−a)

, 3, 3︸︷︷︸
(b−t),(t−b)

]

With

B(0) = [ 1︸︷︷︸
(s−a)

, 0, 0, 0, 1︸︷︷︸
(a−b)

, 0, 0, 0, 1︸︷︷︸
(b−t)

, 0]

we get the canonical penalty vector

p = [ 1.5︸︷︷︸
=w(s−a)

, 0, 0, 0, 2︸︷︷︸
=w(a−b)

, 0, 0, 0, 3︸︷︷︸
=w(b−t)

, 0] .
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G. Two Detailed Shortest Path Examples for the Penalty Method

We see that the edge b − a, for example, is not punished, while the edge in opposite
direction a− b is punished. Hence, the punished value of the path s− b− a− t is now
0 whereas it was 2 in Example G.1 where both directions of each edge were penalized.

Altogether we get the following chart where distinctions from Example G.1 are empha-
sized in bold print.

path P w(P ) p(P ) fε(P )
s− a− b− t 6.5 6.5 6.5 + 6.5 · ε
s− b− t 8 3 8 + 3 · ε
s− a− t 11.5 1.5 11.5 + 1.5 · ε

s− b− a− t 17 0 17 + 0 · ε

Again we plotted the linear functions fε(·) of the four paths in order to determine the
penalty alternatives for each penalty parameter ε. Once more the bold lines indicate the
penalized functional value fε(·) which indicates the corresponding penalty alterntive.

1 2 3 4 5

6

12

18

24

ε1 ε2 ε30

ε

fε(·)

fε(s− a− b− t) = 6.5 + 6.5 · ε
fε(s− b− t) = 8 + 3 · ε
fε(s− a− t) = 11.5 + 1.5 · ε
fε(s− b− a− t) = 17

Without proof we summarize:

1. For each ε in the interval
[
0, ε1 = 3

7
≈ 0.43

]
the optimal solution s− a− b− t is an ε-penalty alternative.

2. For each ε in the interval
[
ε1 = 3

7
≈ 0.43, ε2 = 7

3
≈ 2.33

]
s− b− t is an ε-penalty alternative.

3. For each ε in the interval
[
ε2 = 7

3
≈ 2.33, ε3 = 11

3
≈ 3.67

]
s− a− t is an ε-penalty alternative.

4. In contrast to Example G.1 where we examined the representation as undirected
graph, now the path s− b− a− t becomes an ε-penalty alternative. It is optimal
for each ε in the interval

[
ε3 = 11

3
≈ 3.67,∞

]
.

5. Once more it can be shown that the unconsidered paths containing cycles (e.g.
s− b− a− s− b− t) are for no 0 ≤ ε ≤ ∞ penalty alternatives.
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Thus we saw that the penalty alternatives can depend on the graph representation.
We can prevent this by adjusting the canonical penalty vector. In this example with the
representation as directed graph we could modify the penalty vector p a bit by penalizing
also the edges in opposite direction. By doing so and penalizing with

p = [ 1.5︸︷︷︸
=w(s−a)

, 1.5︸︷︷︸
=w(a−s)

, 0, 0, 2︸︷︷︸
=w(a−b)

, 2︸︷︷︸
=w(b−a)

, 0, 0, 3︸︷︷︸
=w(b−t)

, 3︸︷︷︸
=w(b−t)

] .

we would get the same penalty alternatives as computed in Example G.1.
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Appendix H

Examples for General Σ-Type
Problems

Referes to pages 22, 33, 29, and 110.

We already mentioned examples for Σ-type problems on page 22: the shortest path
problem, the minimum spanning tree problem, the assignment problem, the traveling
salesperson problem, the binary knapsack problem and the sequence alignment prob-
lem. In this section we present some more examples for general Σ-type problems (please
remember that Σ-type problems are general Σ-type problems as well).

Unbounded and b-Bounded Knapsack Problem

Consider a weight vector1 w ∈ Rn
≥0 and a vector of values v ∈ Rn

≥0. Thus we have n
items (w1, v1), . . . , (wn, vn) with weights wi and values vi. Furthermore let C ≥ 0 be a
given knapsack capacity.

Then a knapsack problem is a problem of the following type.

max
n∑
i=1

vixi

subject to
n∑
i=1

wixi ≤ C

xi ∈ {0, 1, . . . , b} for i = 1, . . . , n

We differentiate the following three different types of knapsack problems:

(i) In the case b = 1 we call the problem above 0-1-knapsack problem or binary
knapsack problem [KP].

(ii) In the case b = ∞, where we have no upper bound for xi, we call the problem
unbounded knapsack problem [UKP].

(iii) In the case 1 < b < ∞ we call the problem b-bounded knapsack problem
[BKP(b)].

1Note that the item weights wi are not the weight function in our definition of general Σ-type
problem.
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Thus the unbounded knapsack problem is a general Σ-type problem: maximize v(B)
over all B ∈ S, where S ⊆ Nn contains all collections of items which fulfill the capacity
constraint w(B) ≤ C.
Analogously the b-bounded knapsack problem, where we have at most b copies of each
item, is a general Σ-type problem which differs only in the definition of S which is now
a subset of {0, 1, . . . , b}n.

Transportation Problem

Assume a set of n sources and m sinks, each source i has a certain supply si ∈ R of
goods and each sink j has a certain demand di ∈ R with s1 + · · ·+ sn = d1 + · · ·+ dm.
For each path (i, j) from a source i to a sink j transportation costs cij per unit arise.
The aim is to transport the goods from the sources to the sinks, such that each sink gets
as much goods as it needs and such that the total transportation costs are minimal.

min
x

n∑
i=1

m∑
j=1

cij · xij (TP)

s.t.
m∑
j=1

xij = si for i = 1, . . . , n

n∑
i=1

xij = di for j = 1, . . . ,m

xij ≥ 0 for i = 1, . . . , n and j = 1, . . . ,m

Here the weight function w assigns to each path (i, j) the transportation costs cij. The
set of feasible solutions S ⊆ Nn contains all transportation plans which satisfy the
demands without exceeding the supplies.

Network Flow Problem

Consider a finite directed graph G = (V,E) with a non-negative capacity c(e) for
every edge e ∈ E, let s and t denote two distinguished vertices, the source and sink
respectively.
A feasible flow is a real-valued function f : E → [0,∞), which fulfills two properties.

1. Capacity constraint: 0 ≤ f(e) ≤ c(e) for all edges e ∈ E .

2. Flow conservation: The sum of the flows into the vertex should be the sum of
the flows out of the vertex.We write∑

e=(v,v)∈E

f(e) =
∑

e=(v,v)∈E

f(e) for every vertex v ∈ V \{s, t} .

Then we consider the following maximization problem called the network flow problem

max
f feasible flow

w(f) :=
∑
e=(s,v)

f(e)−
∑
e=(v,s)

f(e) =
∑
e=(v,t)

f(e)−
∑
e=(t,v)

f(e) .
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Appendix I

Proofs to Section 2.3

I.1 Proof of Lemma 2.3.5

Refers to Lemma 2.3.5 on page 37.

Lemma (Properties of Penalty Alternatives, Schwarz 2003)
The following two statements hold.

(i) Every penalty alternative P is optimal for all penalty parameters ε in a non-empty
optimality interval IP = [εL, εR] , εL, εR ∈ R∪ {∞} and for no other parameters.
The case εL = εR is allowed. We call P an interval representative of IP .

(ii) If P and P ′ are two penalty alternatives and IP and IP ′ their optimality intervals,
then there are only three cases possible.

a) IP = IP ′, iff w(P ) = w (P ′) and p(P ) = p (P ′).

b) IP ∩ IP ′ = ∅.
c) IP ∩ IP ′ = {ε}, this means the intersection contains only a single epsilon.

This happens if IP and IP ′ are neighboring intervals.

Proof (cf. [Sch 2003, p. 16-17]).

(i) Assume P ∈ S is optimal for the penalty parameters εL, εR ∈ R ∪ {∞} with
εL < εR.

Case 1: εR <∞. In this case we have

w (P ) + εL · p (P ) ≤ w (B) + εL · p (B) for all B ∈ S , (I.1)
w (P ) + εR · p (P ) ≤ w (B) + εR · p (B) for all B ∈ S . (I.2)

For an intermediate value ε ∈ (εL, εR) we multiply (I.1) by εR−ε
εR−εL

> 0 and (I.2)

by ε−εL
εR−εL

> 0. Adding up these two inequalities leads to(
εR − ε
εR − εL

+
ε− εL
εR − εL

)
· w (P ) +

(
εR − ε
εR − εL

+
ε− εL
εR − εL

)
· p (P )

≤
(
εR − ε
εR − εL

+
ε− εL
εR − εL

)
· w (B) +

(
εR − ε
εR − εL

+
ε− εL
εR − εL

)
· p (B) for all B ∈ S
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which is equivalent to

w (P ) + ε · p (P ) ≤ w (B) + ε · p (B) for all B ∈ S . (I.3)

Hence, P is also optimal for the intermediate value ε ∈ (εL, εR) and thus for all
values ε ∈ [εL, εR].

Case 2: εR =∞. In this case we have

w (P ) + εL · p (P ) ≤ w (B) + εL · p (B) for all B ∈ S , (I.4)
p (P ) ≤ p (B) for all B ∈ S . (I.5)

For a value ε > εL we multiply (I.5) by ε− εL > 0 and add (I.4), getting

w (P ) + ε · p (P ) ≤ w (B) + ε · p (B) for all B ∈ S . (I.6)

Hence, P is also optimal for all values ε > εL.

(ii) Assume that P, P ′ ∈ S are both optimal for two different parameters εL and εR
with εL < εR.

Case 1: εR <∞. In this case we have

w (P ) + εL · p (P ) = w (P ′) + εL · p (P ′) and (I.7)
w (P ) + εR · p (P ) = w (P ′) + εR · p (P ′) . (I.8)

Subtracting (I.7) from (I.8) we get

(εR − εL) · p (P ) = (εR − εL) · p (P ′) | : (εR − εL) 6= 0
⇒ p (P ) = p (P ′)
⇒ w (P ) = w (P ′)
⇒ fε (P ) = fε (P ′) for all ε ≥ 0 (I.9)

Case 2: εR =∞. In this case we have likewise (I.7) and directly p (P ) = p (P ′).
Hence, (I.9) is also true for εR =∞.

In both cases P and P ′ are optimal for the same parameters ε and must have the
same optimality interval. �
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I.2. Proof of Theorem 2.3.10

I.2 Proof of Theorem 2.3.10

Refers to Theorem 2.3.10 on page 40.

Theorem (Althöfer, Berger, Schwarz [ABS 2002])
Let w : E → R be a real-valued function and p : E → R+ a positive real valued function

on E. Let B(ε) be defined according to Definition 2.2.2 for ε ∈ R+. The following four
statements hold:

(i) p
(
B(ε)

)
is weakly monotonically decreasing in ε.

(ii) w
(
B(ε)

)
is weakly monotonically increasing in ε.

(iii) w
(
B(ε)

)
− p

(
B(ε)

)
is weakly monotonically increasing in ε.

(iv)
(
B(ε)

)
+ ε · p

(
B(ε)

)
is weakly monotonically increasing in ε.

Proof (cf. [Sch 2003, p. 10]). Let δ and ε be two arbitrary nonnegative penalty pa-
rameters with 0 ≤ δ < ε.

Because of the definition of B(δ) and B(ε) the following inequalities hold.

(i) In the case ε <∞ we have

w
(
B(ε)

)
+ ε · p

(
B(ε)

)
≤ w

(
B(δ)

)
+ ε · p

(
B(δ)

)
, (I.10)

w
(
B(ε)

)
+ δ · p

(
B(ε)

)
≥ w

(
B(δ)

)
+ δ · p

(
B(δ)

)
. (I.11)

Subtracting (I.11) from (I.10) we get

(ε− δ) · p
(
B(ε)

)
≤ (ε− δ) · p

(
B(δ)

)
| : (ε− δ) > 0

⇔ p
(
B(ε)

)
≤ p

(
B(δ)

)
. (I.12)

In the case ε =∞ inequality (I.12) follows directly from the definition of B(∞).

(ii) Subtracting (I.12) multiplied with δ from (I.10) we get

w
(
B(ε)

)
≥ w

(
B(δ)

)
. (I.13)

(iii) Subtracting (I.12) from (I.13) we get

w
(
B(ε)

)
− p

(
B(ε)

)
≥ w

(
B(δ)

)
− p

(
B(δ)

)
.

(iv) With (I.11) and ε > δ ≥ 0 we have
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(
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)
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(
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)
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(
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)
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(
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(
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(
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(
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(
B(δ)

)
+ δp

(
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)
. �
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Appendix J

Experimentally Observed
Cordel Frequencies
under the Penalty Selection Rule

Overview of the Cordel frequencies presented in this chapter:

Shortest
Path
Problem

Grid Graphs
(refers to p. 71)

quadratic n× n grids Figure J.1.1, p. 212

rectangular n× 2n grids Figure J.1.2, p. 213

Trellises
(refers to p. 73)

quadratic n× n trellis Figure J.2.1, p. 214

rectangularm×2m trellis Figure J.2.3, p. 216

rectangular 2n× n trellis Figure J.2.5, p. 218

Real Road Networks (refers to p. 75) Figure J.3.1, p. 220

MST
Problem

Grid Graphs
(refers to p. 81)

quadratic n× n grids Figure J.4.1, p. 224

rectangular n× 2n grids Figure J.4.3, p. 226

Knapsack
Problems

b-bounded
Knapsack Problem
(refers to p. 82)

b = 1 Figure J.5.1, p. 228

b = 10 Figure J.5.2, p. 229

b = 20 Figure J.5.3, p. 230

b =∞ Figure J.5.4, p. 231

Overview of the adjusted Cordel frequencies presented in this chapter:

Shortest
Path
Problem

Trellises
(refers to p. 86)

quadratic n× n trellis Figure J.2.2, p. 215

rectangularm×2m trellis Figure J.2.4, p. 217

rectangular 2n× n trellis Figure J.2.6, p. 219

MST
Problem

Grid Graphs
(refers to p. 88)

quadratic n× n grids Figure J.4.2, p. 225

rectangular n× 2n grids Figure J.4.4, p. 227

211



J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

J.1 Shortest Path Problem in Grid Graphs
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Figure J.1.1: Cordel frequencies for quadratic n× n grids.
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J.1. Shortest Path Problem in Grid Graphs
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Figure J.1.2: Cordel frequencies for rectangular n× 2n grids.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

J.2 Shortest Path Problem in Trellis Graphs
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Figure J.2.1: Cordel frequencies for quadratic n× n trellis graphs.

214



J.2. Shortest Path Problem in Trellis Graphs
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Figure J.2.2: Adjusted Cordel frequencies for quadratic n× n trellis graphs.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

●●●●●●
●
●
●●●●

●●
●●

●●
●
●
●●

●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(a) g = 2

●●●●●
●●

●●●●●
●●●●●●●●●●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●●
●●●●●●

●●●
●●●●

●●●●●●●
●●●●

●●●●●●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(b) g = 3

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●

●
●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(c) g = 4

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(d) g = 5

●●●●●●
●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(e) g = 6

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●
●

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid size m

C
or

de
l f

re
qu

en
cy

●

●

P((d1 ≥≥ d2))
P((d2 ≥≥ d3))

(f) g = 7

Figure J.2.3: Cordel frequencies for rectangular m× 2m trellis graphs.
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J.2. Shortest Path Problem in Trellis Graphs
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Figure J.2.4: Adjusted Cordel frequencies for rectangular m× 2m trellis graphs.
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Figure J.2.5: Cordel frequencies for rectangular 2n× n trellis graphs.
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J.2. Shortest Path Problem in Trellis Graphs
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Figure J.2.6: Adjusted Cordel frequencies for rectangular 2n× n trellis graphs.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

J.3 Shortest Path Problem in Real Road Networks

Refers to page 76.
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Figure J.3.1: Cordel Frequencies in TIGER/Line® roadmaps of the US-States.

List of Abbreviations and Size of the Considered Road Networks

Refers to pages 75, 76, and 76.

with Shape Points without Shape Points
Abbr. US-State # vertices # edges # vertices # edges
AK Alaska 69082 156200 49929 117894
AL Alabama 566843 1322974 401250 991788
AR Arkansas 483175 1126072 321120 801962
AZ Arizona 545111 1331654 385611 1012654
CA California 1613325 3978298 1218395 3188438
CO Colorado 448253 1078590 305932 793948
CT Connecticut 153011 374636 120344 309302
DC District of Columbia 9559 29818 8467 27634

continued on next page
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J.3. Shortest Path Problem in Real Road Networks

with Shape Points without Shape Points
Abbr. US-State # vertices # edges # vertices # edges
DE Delaware 49109 121024 38461 99728
FL Florida 1048506 2661102 830318 2224726
GA Georgia 738879 1739780 541214 1344450
HI Hawaii 64892 153618 49881 123596
IA Iowa 390002 1004538 241505 707544
ID Idaho 271450 637522 171223 437068
IL Illinois 793336 2025634 551005 1540972
IN Indiana 497458 1259500 363495 991574
KS Kansas 474015 1214782 292385 851522
KY Kentucky 467967 1051990 325685 767426
LA Louisiana 413574 998508 308112 787584
MA Massachusetts 308401 770328 253046 659618
MD Maryland 265912 635248 213226 529876
ME Maine 194505 429842 132512 305856
MI Michigan 673534 1690174 487964 1319034
MN Minnesota 547028 1340886 356717 960264
MO Missouri 675407 1615784 443091 1151152
MS Mississippi 413250 966612 288522 717156
MT Montana 317905 721872 189699 465460
NC North Carolina 887630 2019692 656421 1557274
ND North Dakota 210801 521804 124350 348902
NE Nebraska 308157 784016 179211 526124
NH New Hampshire 116920 266830 78588 190166
NJ New Jersey 330386 872072 272564 756428
NM New Mexico 467529 1134168 330013 859136
NV Nevada 261155 622086 163162 426100
NY New York 716215 1794902 516230 1394932
OH Ohio 676058 1685744 478919 1291466
OK Oklahoma 540981 1328430 366020 978508
OR Oregon 536236 1256334 382158 948178
PA Pennsylvania 874843 2176592 626214 1679334
RI Rhode Island 53658 138426 45827 122764
SC South Carolina 463652 1107198 347746 875386
SD South Dakota 212313 519244 120339 335296
TN Tennessee 583484 1352160 415769 1016730
TX Texas 2073870 5168318 1586204 4192986
UT Utah 248730 591526 166468 427002
VA Virginia 630639 1429618 479827 1127994
VT Vermont 97975 215116 62679 144524
WA Washington 575860 1350098 431176 1060730

continued on next page
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

with Shape Points without Shape Points
Abbr. US-State # vertices # edges # vertices # edges
WI Wisconsin 519157 1270872 359481 951520
WV West Virginia 300146 657716 198708 454840
WY Wyoming 253077 608028 166242 434358

Table J.3.2: Number of vertices and number of edges of the road networks from [DIMACS]
before and after the cutting-out of shape points.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

J.4 Minimum Spanning Tree Problem
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Figure J.4.1: Cordel frequencies for quadratic n× n grids.
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Figure J.4.2: Adjusted Cordel frequencies for quadratic n× n grids.
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Figure J.4.3: Cordel frequencies for rectangular n× 2n grids.
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J.4. Minimum Spanning Tree Problem
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Figure J.4.4: Adjusted Cordel frequencies for rectangular n× 2n grids.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule

J.5 Knapsack Problems
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Figure J.5.1: Cordel frequencies for the binary knapsack problem (b = 1).
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J.5. Knapsack Problems
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Figure J.5.2: Cordel frequencies for the bounded knapsack problem with b = 10.
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J. Experimentally Observed Cordel Frequencies under the Penalty Selection Rule
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Figure J.5.3: Cordel frequencies for the bounded knapsack problem with b = 20.
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Figure J.5.4: Cordel frequencies for the unbounded knapsack problem (b =∞).
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Appendix K

Experimentally Observed
Cordel Frequencies
under the Best Solutions Rule

Overview of the Cordel frequencies presented in this chapter:

Shortest Path
Problem

Grid Graphs
(refers to p. 92)

quadratic n× n grids Figure K.1.1, p. 234

rectangular n× 2n grids Figure K.1.2, p. 235

MST
Problem

Grid Graphs
(refers to p. 93)

quadratic n× n grids Figure K.2.1, p. 236

rectangular n× 2n grids Figure K.2.2, p. 237
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K. Experimentally Observed Cordel Frequencies under the Best Solutions Rule

K.1 Shortest Path Problem in Grid Graphs
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(b) g = 3
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Figure K.1.1: Cordel frequencies for quadratic n× n grids.
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K.1. Shortest Path Problem in Grid Graphs
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Figure K.1.2: Cordel frequencies for rectangular n× 2n grids.
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K. Experimentally Observed Cordel Frequencies under the Best Solutions Rule

K.2 Minimum Spanning Tree Problem
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Figure K.2.1: Cordel frequencies for quadratic n× n grids.
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K.2. Minimum Spanning Tree Problem
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Figure K.2.2: Cordel frequencies for rectangular n× 2n grids.
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Appendix L

Considered Distributions

Distributions on [0, 1]

� uniform distribution:

u(x) :=

{
1 for 0 ≤ x ≤ 1

0 for x < 0 or x > 1

U(x) :=


0 for 0 < x

x for 0 ≤ x ≤ 1

1 for x > 1
x0 1

1

u(x)

� increasing distribution:

i(x) :=

{
2x for 0 ≤ x ≤ 1

0 for x < 0 or x > 1

I(x) :=


0 for 0 < x

x2 for 0 ≤ x ≤ 1

1 for x > 1
x

1

0 1

2

i(x)

� decreasing distribution:

d(x) :=

{
2− 2x for 0 ≤ x ≤ 1

0 for x < 0 or x > 1

D(x) :=


0 for 0 < x

2x− x2 for 0 ≤ x ≤ 1

1 for x > 1
x

1

0 1

2

d(x)
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L. Considered Distributions

� triangular distribution:

t(x) :=


4x for 0 ≤ x ≤ 1

2

4− 4x for 1
2
≤ x ≤ 1

0 for x < 0 and x > 1

T (x) :=


0 for x < 0

2x2 for 0 ≤ x ≤ 1
2

−2x2 + 4x− 1 for 1
2
≤ x ≤ 1

1 for x > 1
x

1

0 1

2

t(x)

0.5

Distributions on [0,∞)

� exponential distribution with parameter λ > 0:

eλ(x) :=

{
λe−λx for x ≤ 0

0 for x < 0

Eλ(x) :=

{
1− e−λx for x ≥ 0

0 for x < 0

λ = 2

λ = 1

λ = 0.5

x

1

0 21

2

e(x)

� “right half” of the standard normal distribution (cf. standard normal distribution
on the next page):

ϕ(x) :=

{
2 · ϕ(x) = 2√

2π
e−

x2

2 for 0 ≤ x

0 for x < 0

Φ(x) :=

{
2 · Φ(x)− 1 for x ≥ 0

0 for x < 0
x0-2 2-1 1

1

n(x)

n(x) = 2 · ϕ(x)

ϕ(x)

� “right half” of the logistic distribution with expected value µ = 0 and scale
parameter s > 0 (cf. logistic distribution on the next page):

ls(x) :=

2 · l(x) = 2e−x/s

s(1+e−x/s)
2 for 0 ≤ x

0 for x < 0

Ls(x) :=

{
2 · L(x)− 1 for 0 ≤ x

0 for x < 0

s = 0.25

s = 0.5

s = 1

x0-2 2-1 1

2

l(x)
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Distributions on (−∞,∞)

� standard normal distribution:

ϕ(x) :=
1√
2π

e−
x2

2

Φ(x) :=
1√
2π

∫ x

−∞
e−

x2

2 dx

x
0-2 2-1 1

0.5

n(x)

� logistic distribution with expected value µ = 0 and scale parameter s > 0:

ls(x) :=
e−x/s

s (1 + e−x/s)
2

Ls(x) :=
e−x/s

(1 + e−x/s)
2

s = 0.25

s = 0.5

s = 1

x0-2 2-1 1

1

l(x)
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Appendix M

Maple Worksheets

M.1 Best Solutions Rule for Optimization

Problems with Density f
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(4)(4)

(5)(5)

(2)(2)

(1)(1)

(3)(3)

P d
1
R d

2
 for Minimization Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
KN

N

1K F x nK3$f x $
KN

x

f y $F 2$yKx  dy dx assuming n

T integer, n O 2
1
2

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
KN

N

1KF x nK3$f x $
KN

x

f y $F 2$yKx  dy dx assuming n

T integer, n O 2
7

12
# Decreasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
KN

N

1K F x nK3$f x $
KN

x

f y $F 2$yKx  dy dx assuming n

T integer, n O 2
1
4

 
4 nK7
K3C2 n

# Centered Triangular Distribution on 0, 1 :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
KN

N

1K F x nK3$f x $
KN

x

f y $F 2$yKx  dy dx assuming n

T integer, n O 2

K
1

12
 

10 2Kn nK14 nK12 2K1KnC21
K3C2 n

Int1 d simplify
0

1
2

4 c$ 1K2 c2 nK3

c
2

c

4 b$2$ 2 bKc 2 db dc assuming n T integer, n O 2

K
7

24
 
K2C2Kn n2C2 2KnC2Kn n

n K3 nC2Cn2
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(1)(1)

(4)(4)

(3)(3)

(2)(2)

(5)(5)

P d
1
R d

2
 for Maximization Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
0

N

F x nK3$f x $
x

N

f y $ 1KF 2$yKx  dy dx assuming n

T integer, n O 2
1
2

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
0

N

F x nK3$f x $
x

N

f y $ 1KF 2$yKx  dy dx assuming n

T integer, n O 2
1
4

 
4 nK7
K3C2 n

# Decreasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
0

N

F x nK3$f x $
x

N

f y $ 1KF 2$yKx  dy dx assuming n

T integer, n O 2
7

12
# Centered Triangular Distribution on 0, 1 :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

simplify n$ nK1 $ nK2 $
0

N

F x nK3$f x $
x

N

f y $ 1KF 2$yKx  dy dx assuming n

T integer, n O 2

1
12

 
K10 2Kn nC14 nK21C12 2K1Kn

K3C2 n
# Exponential Distribution:

f d x, λ /piecewise x R 0, λ$eKλ$x, 0 :

F d x, λ /piecewise x R 0, 1KeKλ$x, 0 :

simplify n$ nK1 $ nK2 $
0

N

F x, λ
nK3

$f x, λ $
x

N

f y, λ $ 1KF 2$yKx, λ  dy dx

assuming n T integer, n O 2, λO 0
2
3
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(3)(3)

(2)(2)

(4)(4)

(6)(6)

(5)(5)

(1)(1)

(7)(7)

E d
1

 und E d
2

 for Minimization Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

1K F x nK2$f x $
KN

x

F y  dy dx assuming n T integer, n O 2

1
nC1

E2 d simplify n$ nK1 $ nK2
KN

N

1K F x nK3$f x $
KN

x

F y $f y $ xKy  dy dx

assuming n T integer, n O 2
1

nC1

simplify
E1

E1CE2

1
2

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

1K F x nK2$f x $
KN

x

F y  dy dx assuming n T integer, n O 2

1
3

 n nK1  Β 5
2

, nK1

E2 d simplify n$ nK1 $ nK2
KN

N

1K F x nK3$f x $
KN

x

F y $f y $ xKy  dy dx

assuming n T integer, n O 2
1
10

 n nK1  nK2  Β nK2,
7
2

simplify
E1

E1CE2

10 Β nK1,
5
2

10 Β nK1,
5
2

C3 Β nK2,
7
2

 nK6 Β nK2,
7
2

# Decreasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

1K F x nK2$f x $
KN

x

F y  dy dx assuming n T integer, n O 2

2 n

4 n2K1
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(10)(10)

(8)(8)

(12)(12)

(11)(11)

(9)(9)

E2 d simplify n$ nK1 $ nK2
KN

N

1K F x nK3$f x $
KN

x

F y $f y $ xKy  dy dx

assuming n T integer, n O 2
4 nK1  n

8 n3K12 n2K2 nC3

simplify
E1

E1CE2

2 nK3
4 nK5

# Centered Triangular Distribution on 0, 1  K no simple formulas have been found :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

1K F x nK2$f x $
KN

x

F y  dy dx assuming n T integer, n

O 2 :

E2 d simplify n$ nK1 $ nK2
KN

N

1K F x nK3$f x $
KN

x

F y $f y $ xKy  dy dx

assuming n T integer, n O 2 :

simplify
E1

E1CE2
:

# Exponential Distribution:

f d x, λ /piecewise x R 0, λ$eKλ$x, 0 :

F d x, λ /piecewise x R 0, 1KeKλ$x, 0 :

E1 d simplify n$ nK1 $
KN

N

1K F x, λ
nK2

$f x, λ $
KN

x

F y, λ  dy dx assuming n

T integer, n O 2, λO 0
1

λ nK1

E2 d simplify n$ nK1 $ nK2
KN

N

1K F x, λ
nK3

$f x, λ $
KN

x

F y, λ $f y, λ $ xKy  dy 

dx assuming n T integer, n O 2, λO 0

1

λ nK2

simplify
E1

E1CE2

nK2
2 nK3
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(2)(2)

(4)(4)

(3)(3)

(6)(6)

(5)(5)

(1)(1)

E d
1

 and E d
2

 for Maximization Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

F x nK2$f x $
x

N

f y  $ yKx  dy dx assuming n T integer, n

O 2
1

nC1

E2 d simplify n$ nK1 $ nK2
KN

N

F x nK3$f x $
x

N

1KF y $ f y  $ yKx  dy dx

assuming n T integer, n O 2
1

nC1

simplify
E1

E1CE2

1
2

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

F x nK2$f x $
x

N

f y  $ yKx  dy dx assuming n T integer, n

O 2
2 n

4 n2K1

E2 d simplify n$ nK1 $ nK2
KN

N

F x nK3$f x $
x

N

1KF y $ f y  $ yKx  dy dx

assuming n T integer, n O 2
4 nK1  n

8 n3K12 n2K2 nC3

simplify
E1

E1CE2

2 nK3
4 nK5
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(8)(8)

(7)(7)

(9)(9)

# Decreasing Distribution on 0, 1  K no simple formulas have been found :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

F x nK2$f x $
x

N

f y  $ yKx  dy dx assuming n T integer, n

O 2 :

E2 d simplify n$ nK1 $ nK2
KN

N

F x nK3$f x $
x

N

1KF y $ f y  $ yKx  dy dx

assuming n T integer, n O 2 :

# Centered Triangular Distribution on 0, 1  K no simple formulas have been found :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

E1 d simplify n$ nK1 $
KN

N

F x nK2$f x $
x

N

f y  $ yKx  dy dx assuming n T integer, n

O 2 :

E2 d simplify n$ nK1 $ nK2
KN

N

F x nK3$f x $
x

N

1KF y $ f y  $ yKx  dy dx

assuming n T integer, n O 2 :

# Exponential Distribution:

f d x, λ /piecewise x R 0, λ$eKλ$x, 0 :

F d x, λ /piecewise x R 0, 1KeKλ$x, 0 :

E1 d simplify n$ nK1 $
KN

N

F x, λ
nK2

$f x, λ $
x

N

f y, λ  $ yKx  dy dx assuming n

T integer, n O 2, λO 0
1

λ

E2 d simplify n$ nK1 $ nK2
KN

N

F x, λ
nK3

$f x, λ $
x

N

1KF y, λ $ f y, λ  $ yKx  

dy dx assuming n T integer, n O 2, λO 0

1

2 λ

simplify
E1

E1CE2

2
3
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M.2 Best Solutions Rule for Random Σ-Type

Problems
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(3)(3)

(1)(1)

(2)(2)

(5)(5)

(4)(4)

P d
1
O d

2
 for Random ΣKType Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

Pu d simplify n$ nK1 $
0

N

1KF x nK2$ F x KF
x
2

$f x  dx assuming n T integer, n

O 2
1
2

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

Pi d simplify n$ nK1 $
0

N

1KF x nK2$ F x KF
x
2

$f x  dx assuming n T integer, n

O 2
3
4

# Decreasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :

Pd d simplify n$ nK1 $
0

N

1KF x nK2$ F x KF
x
2

$f x  dx assuming n T integer, n

O 2
1
4

 
4 nK3
2 nK1

# Centered Triangular Distribution on 0, 1 :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

Pt d simplify n$ nK1 $
0

N

1KF x nK2$ F x KF
x
2

$f x  dx assuming n T integer, n

O 2

K
1
4

 
K6 nC4 2K1KnC3

2 nK1
# Exponential Distribution:

f d x, λ /λ$eKλ$x :

F d x, λ /1KeKλ$x :

Ped simplify n$ nK1 $
0

N

1KF x, λ
nK2

$ F x, λ KF
x
2

, λ $f x, λ  dx assuming n

T integer, n O 2, λO 0
nK1

2 nK1
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(4)(4)

(5)(5)

(1)(1)

(3)(3)

(2)(2)

(6)(6)

Expected Values E d
1

 and E d
2

 for Random ΣKType Problems

# Uniform Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 1, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x, 1 ! x, 1 :

E1 d simplify n$
0

N

x$ 1KF x nK1$f x  dx assuming n T integer, n O 2

1
nC1

E2 d simplify n$ nK1 $
0

N

1KF x nK2$f x
0

x
2

y$f y  dy dx assuming n T integer, n O 2

1
4 nC1

simplify
E1

E1CE2

4
5

# Increasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, x2, 1 ! x, 1 :

E1 d simplify n$
0

N

x$ 1KF x nK1$f x  dx assuming n T integer, n O 2

n Β n,
3
2

E2 d simplify n$ nK1 $
0

N

1KF x nK2$f x
0

x
2

y$f y  dy dx assuming n T integer, n O 2

1
12

 n nK1  Β 5
2

, nK1

simplify
E1

E1CE2

12 Β n,
3
2

12 Β n,
3
2

CΒ nK1,
5
2

 nKΒ nK1,
5
2

# Decreasing Distribution on 0, 1 :
f d x/piecewise 0 % x % 1, 2K2 x, 0 :
F d x/piecewise x ! 0, 0, 0 % x % 1, 2 xKx2, 1 ! x, 1 :
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(11)(11)

(9)(9)

(12)(12)

(8)(8)

(7)(7)

(10)(10)

E1 d simplify n$
0

N

x$ 1KF x nK1$f x  dx assuming n T integer, n O 2

1
2 nC1

E2 d simplify n$ nK1 $
0

N

1KF x nK2$f x
0

x
2

y$f y  dy dx assuming n T integer, n O 2

1
2

 
n

4 n2K1

simplify
E1

E1CE2

2 2 nK1
5 nK2

# Centered Triangular Distribution on 0, 1 K no simple formulas have been found :

f d x/piecewise 0 % x %
1
2

, 4 x,
1
2

! x % 1, 4K4 x, 0 :

F d x/piecewise x ! 0, 0, 0 % x %
1
2

, 2x2,
1
2

! x % 1,K2 x2C4 xK1, 1 ! x, 1 :

E1 d simplify n$
0

N

x$ 1KF x nK1$f x  dx assuming n T integer, n O 2 :

E2 d simplify n$ nK1 $
0

N

1KF x nK2$f x
0

x
2

y$f y  dy dx assuming n T integer, n

O 2 :

# Exponential Distribution:

f d x, λ /λ$eKλ$x :

F d x, λ /1KeKλ$x :

E1 d simplify n$
0

N

x$ 1KF x, λ
nK1

$f x, λ  dx assuming n T integer, n O 2, λO 0

1

n λ

E2 d simplify n$ nK1 $
0

N

1KF x, λ
nK2

$f x, λ
0

x
2

y$f y, λ  dy dx assuming n

T integer, n O 2, λO 0
n

4 n2K4 nC1  λ

simplify
E1

E1CE2

4 n2K4 nC1

5 n2K4 nC1
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Nomenclature

G = (V,E) Graph with edge set E and set of vertices V

lex min Lexicographical minimization. The returned value is minimal concern-

ing the first argument. Amongst all these solutions it is also minimal

concerning the second argument.

P(E) Power set of E

S Set of feasible solutions

Sometimes also used for selection rules.

Classification of Moves

Refers to Chapter 1.

D Draw

L Loss

W Win

Chess Pieces

Refers to Chapter 1.

In Forsyth-Edwards Notation (FEN) upper case letters are used for white pieces while

lower case letters represent black pieces.

B, b Bishop

K, k King

N, n Knight

P, p Pawn

Q, q Queen

R, r Rook
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Nomenclature

The Generalized Cordel Property for Chess

Refers to Chapter 1.

CF(k) Cordel Frequency for chess positions with exactly k chess pieces incl.

kings,

cf. Definition 1.3.3 (page 12)

(GeCoP) Generalized Cordel Property,

cf. Definition 1.2.8 (page 7) for chess under the best moves rule

and Definition 1.2.10 (page 8) for chess with an arbitrary selection rule

m1,m2,m3 Three moves chosen by a selection rule S,

cf. Definition 1.2.11 (page 8)

The Generalized Cordel Property for Optimization Problems

Refers to Section 1.4 and Chapter 2, 3, and 4.

CF(T, S,R) Cordel Frequency for a specific optimization problem T , a selection rule

S, and a rule R for generating random instances of T ,

cf. Definition 1.4.4 (page 19)

CF(n) Cordel Frequency, where n is a size parameter of the considered opti-

mization problem

di Difference of the functional values of x1 and x2,

di := |f (xi)− f (xi+1)|

di Adjusted difference for the computation of the adjusted Cordel fre-

quency,

cf. Equations (3.1) and (3.2) (page 86)

(GeCoP) Generalized Cordel Property,

cf. Definition 1.4.1 (page 18)

x1, x2, x3 Three feasible solutions chosen by a selection rule S,

cf. Definition 1.2.11 (page 18)
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The Penalty Method

Refers to Chapter 2 and 3.

B(0) An optimal solution

B(ε) ε-penalty alternative, ε-alternative

ε Penalty parameter

ε0, ε1, ε2, . . . Threshold parameters

fε(B) Penalized value/weight of B

IP Optimality interval of the penalty alternative P

p Penalty vector

p(B) Penalized part of B

P (i) i-th penalty alternative

P (0), P (1), . . . , P (k−1) k best penalty alternatives

w Weight-vector

w(B) Weight of B

w(ε) Penalized weight

The Generalized Cordel Property for Optimization Problems

with Density f

Refers to Chapter 5.

CFf,max(n) Cordel frequency of a maximization problem with exactly n feasible

solutions and density f

CFf,min(n) Cordel frequency of a minimization problem with exactly n feasible

solutions and density f

f Probability density function, describing the distribution of the func-

tional values of the optimization problem

V1, . . . Vn n independent random variables with density f representing the func-

tional values of an optimization problem with exactly n feasible solutions

and density f

V1:n, . . . V1:n Order statistics of V1, . . . Vn

259
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� dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Ab-
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